Skip to main content
Log in

Abstract

The authors establish a Cheeger-Müller type theorem for the complex valued analytic torsion introduced by Burghelea and Haller for flat vector bundles carrying nondegenerate symmetric bilinear forms. As a consequence, they prove the Burghelea-Haller conjecture in full generality, which gives an analytic interpretation of (the square of) the Turaev torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atiyah, M. F., Bott, R. and Patodi, V. K., On the heat equation and the index theorem, Invent. Math., 19, 1973, 279–330.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bismut, J.-M., Gillet, H. and Soulé, C., Analytic torsions and holomorphic determinant line bundles I, Commun. Math. Phys., 115, 1988, 49–78.

    Article  Google Scholar 

  3. Bismut, J.-M. and Lebeau, G., Complex immersions and Quillen metrics, Publ. Math. IHES., 74, 1991, 1–297.

    MATH  Google Scholar 

  4. Bismut, J.-M. and Zhang, W., An Extension of a Theorem by Cheeger and Müller, Astérisque, 205, Soc. Math. France, Paris, 1992.

    Google Scholar 

  5. Bismut, J.-M. and Zhang, W., Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., 4, 1994, 136–212.

    Article  MATH  MathSciNet  Google Scholar 

  6. Braverman, M. and Kappeler, T., A refinement of the Ray-Singer torsion, C. R. Acad. Sci. Paris, 341, 2005, 497–502.

    MATH  MathSciNet  Google Scholar 

  7. Braverman, M. and Kappeler, T., Refined analytic torsion as an element of the determinant line, Geom. and Topol., 11, 2007, 139–213.

    Article  MATH  MathSciNet  Google Scholar 

  8. Braverman, M. and Kappeler, T., Ray-Singer type theorem for the refined analytic torsion, J. Funct. Anal., 243, 2007, 232–256.

    Article  MATH  MathSciNet  Google Scholar 

  9. Braverman, M. and Kappeler, T., Comparison of the refined analytic and the Burghelea-Haller torsions, Ann. Inst. Fourier., 57, 2007, 2361–2387.

    MATH  MathSciNet  Google Scholar 

  10. Burghelea, D. and Haller, S., Torsion, as function on the space of representations, C *-algebras and Elliptic Theory II (Trends in Mathematics), D. Burghelea, R. Melrose, A. S. Mishchenko, et al (eds.), Birkhäuser, Basel, 2008, 41–66.

    Chapter  Google Scholar 

  11. Burghelea, D. and Haller, S., Complex valued Ray-Singer torsion, J. Funct. Anal., 248, 2007, 27–78.

    Article  MATH  MathSciNet  Google Scholar 

  12. Burghelea, D. and Haller, S., Complex valued Ray-Singer torsion II, preprint. math.DG/0610875

  13. Cheeger, J., Analytic torsion and the heat equation, Ann. of Math., 109, 1979, 259–332.

    Article  MathSciNet  Google Scholar 

  14. Chern, S. and Hu, X., Equivariant Chern character for the invariant Dirac operator, Michigan Math. J., 44, 1997, 451–473.

    Article  MATH  MathSciNet  Google Scholar 

  15. Farber, M. and Turaev, V., Poincaré-Reidemeister metric, Euler structures and torsion, J. Reine Angew. Math., 520, 2000, 195–225.

    MATH  MathSciNet  Google Scholar 

  16. Feng, H., A remark on the noncommutative Chern character (in Chinese), Acta Math. Sinica, 46, 2003, 57–64.

    MATH  Google Scholar 

  17. Getzler, E., Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Commun. Math. Phys., 92, 1983, 163–178.

    Article  MATH  MathSciNet  Google Scholar 

  18. Getzler, E., A short proof the local Atiyah-Singer index theorem, Topology, 25, 1986, 111–117.

    Article  MATH  MathSciNet  Google Scholar 

  19. Helffer, B. and Sjöstrand, J., Puis multiples en mécanique semi-classique IV: Etude du complexe de Witten, Comm. PDE, 10, 1985, 245–340.

    Article  MATH  Google Scholar 

  20. Knudson, F. F. and Mumford, D., The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “div”, Math. Scand., 39, 1976, 19–55.

    MathSciNet  Google Scholar 

  21. Laudenbach, F., On the Thom-Smale complex, Appendix in “An Extension of a Theorem by Cheeger and Müller”, J.-M. Bismut and W. Zhang (eds.), Astérisque, 205, Paris, 1992.

  22. Mathai, V. and Quillen, D., Superconnections, Thom classes, and equivariant differential forms, Topology, 25, 1986, 85–110.

    Article  MATH  MathSciNet  Google Scholar 

  23. Milnor, J., Whitehead torsion, Bull. Amer. Math. Soc., 72, 1966, 358–426.

    Article  MATH  MathSciNet  Google Scholar 

  24. Müller, W., Analytic torsion and the R-torsion of Riemannian manifolds, Adv. in Math., 28, 1978, 233–305.

    Article  MATH  MathSciNet  Google Scholar 

  25. Müller, W., Analytic torsion and the R-torsion for unimodular representations, J. Amer. Math. Soc., 6, 1993, 721–753.

    Article  MATH  MathSciNet  Google Scholar 

  26. Quillen, D., Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl., 14, 1985, 31–34.

    Article  Google Scholar 

  27. Quillen, D., Superconnections and the Chern character, Topology, 24, 1985, 89–95.

    MATH  MathSciNet  Google Scholar 

  28. Ray, D. B. and Singer, I. M., R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math., 7, 1971, 145–210.

    Article  MATH  MathSciNet  Google Scholar 

  29. Shubin, M. A., Semiclassical asymptotics on covering manifolds and Morse inequalities, Geom. Funct. Anals., 6, 1996, 370–409.

    Article  MATH  MathSciNet  Google Scholar 

  30. Shubin, M. A., Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  31. Simon, B., Trace Ideals and Their Applications, Lecture Notes Series, 35, London Math. Soc., Cambridge University Press, Cambridge, 1979.

    Google Scholar 

  32. Smale, S., On gradient dynamical systems, Ann. of Math., 74, 1961, 199–206.

    Article  MathSciNet  Google Scholar 

  33. Su, G. and Zhang, W., A Cheeger-Müller theorem for symmetric bilinear torsions, preprint. math. DG/0610577

  34. Turaev, V., Euler structures, nonsingular vector fields, and Reidemeister-type torsion, Math. USSR-Izv., 34, 1990, 627–662.

    Article  MATH  MathSciNet  Google Scholar 

  35. Witten, E., Supersymmetry and Morse theory, J. Diff. Geom., 17, 1982, 661–692.

    MATH  MathSciNet  Google Scholar 

  36. Zhang, W., Lectures on Chern-Weil Theory and Witten Deformations, Nankai Tracts in Mathematics, Vol. 4, World Scientific, Singapore, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxiang Su.

Additional information

Project supported by the Qiushi Foundation and the National Natural Science Foundation of China (Nos. 10571088, 10621101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, G., Zhang, W. A Cheeger-Müller theorem for symmetric bilinear torsions. Chin. Ann. Math. Ser. B 29, 385–424 (2008). https://doi.org/10.1007/s11401-007-0307-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-007-0307-8

Keywords

2000 MR Subject Classification

Navigation