Skip to main content
Log in

Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegatus

  • SEDIMENTS, SEC 1 • SEDIMENT QUALITY AND IMPACT ASSESSMENT • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have shown that ivermectin, a widely used parasiticide, is very toxic to many non-target invertebrate species. In view of the strong binding of ivermectin to sediments and the scarcity of data on chronic toxicity to freshwater sediment invertebrates, chronic effects of the parasiticide on the midge Chironomus riparius and the oligochaete Lumbriculus variegatus were investigated.

Materials and methods

C. riparius and L. variegatus were exposed for up to 28 days to ivermectin-spiked artificial sediment. Nominal ivermectin concentrations were 3.1 to 50 µg/kg dry sediment in the Chironomus test and 50 to 5,000 µg/kg dry sediment in the Lumbriculus test. The evaluated endpoints were survival, growth, emergence ratio and development rate for C. riparius, and survival/reproduction and total biomass for L. variegatus.

Results and discussion

Ivermectin had a significant, concentration-dependent effect on larval survival and growth, emergence and development rate of C. riparius. With a lowest observed effect concentration (LOEC) of 6.3 µg/kg dry sediment, larval dry weight was the most sensitive endpoint. L. variegatus was considerably less sensitive to ivermectin than C. riparius. A LOEC of 500 µg/kg dry sediment was derived for effects on survival/reproduction and total biomass.

Conclusions

The results of the present study, especially the high toxicity of ivermectin to C. riparius, indicate that the potential impact of ivermectin on freshwater benthic invertebrates deserves further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Åkerblom N, Goedkoop W (2003) Stable isotopes and fatty acids reveal that Chironomus riparius feeds selectively on added food in standardized toxicity tests. Environ Toxicol Chem 22:1473–1480

    Google Scholar 

  • Allen YT, Thain JE, Haworth S, Barry J (2007) Development and application of long-term sublethal whole sediment tests with Arenicola marina and Corophium volutator using ivermectin as test compound. Environ Pollut 146:92–99

    Article  CAS  Google Scholar 

  • Boxall ABA, Fogg LA, Baird DJ, Lewis C, Telfer TC, Kolpin D, Gravell A, Pemberton E, Boucard T (2006) Targeted monitoring study for veterinary medicines in the environment. Bristol, UK: Environment Agency. Science Report SC030183/SR

  • Brust K, Licht O, Hultsch V, Jungmann D, Nagel R (2001) Effects of Terbutryn on Aufwuchs and Lumbriculus variegatus in Artificial Indoor Streams. Environ Toxicol Chem 20:2000–2007

    CAS  Google Scholar 

  • Campbell WC, Fisher MH, Stapley EO, Albers-Schonberg G, Jacob TA (1983) Ivermectin: a potent new antiparasitic agent. Science 221:823–828

    Article  CAS  Google Scholar 

  • Collier LM, Pinn EH (1998) An assessment of the acute impact of the sea lice treatment ivermectin on a benthic community. J Exp Mar Biol Ecol 230:131–147

    Article  CAS  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

    Article  CAS  Google Scholar 

  • Davies IM, Rodger GK (2000) A review of the use of ivermectin as a treatment for sea lice [Lepeophtheirus salmonis (Køyer) and Caligus elongatus Nordmann] infestation in farmed Atlantic salmon (Salmo salar L.). Aquacult Res 31:869–883

    Article  Google Scholar 

  • Davies IM, Gillibrand PA, McHenery IG, Rae GH (1998) Environmental risk of ivermectin to sediment dwelling organisms. Aquaculture 163:29–46

    Article  CAS  Google Scholar 

  • De Haas EM, Wagner C, Koelmans AA, Kraak MHS, Admiraal W (2006) Habitat selection by chironomid larvae: fast growth requires fast food. J Animal Ecology 75:148–155

    Article  Google Scholar 

  • Ding J, Drewes CD, Hsu WH (2001) Behavioral effects of ivermectin in a freshwater oligochaete, Lumbriculus variegatus. Environ Toxicol Chem 20:1584–1590

    CAS  Google Scholar 

  • Duce IR, Scott RH (1985) Actions of dihydroavermectin B1a on insect muscle. Brit J Pharmacol 85:395–401

    CAS  Google Scholar 

  • Edwards CA, Atiyeh RM, Römbke J (2001) Environmental impact of avermectins. Rev Environ Contam Toxicol 171:111–137

    CAS  Google Scholar 

  • Edwards R (1996) Salmon farmers win license to kill. New Scientist 151:4

    Google Scholar 

  • Egeler P, Meller M, Schallnaß, HJ, Gilberg D (2005) Validation of a sediment toxicity test with the endobenthic aquatic oligochaete Lumbriculus variegatus by an international ring test. Technical Report, R&D No.: 202 67 429. Federal Environmental Agency (Umweltbundesamt), Berlin, Germany, pp 98

  • Elendt BP (1990) Selenium deficiency in crustacea: an ultrastructural approach to antennal damage in Daphnia magna Straus. Protoplasma 154:25–33

    Article  CAS  Google Scholar 

  • EMEA (2008) Revised guideline on environmental impact assessment for veterinary medicinal products in support of the VICH guidelines GL6 and GL38. European Medicines Agency. London, UK: Committee for Medicinal Products for Veterinary Use (CVMP), EMEA. EMEA/CVMP/ERA/418282/2005-Rev.1, pp 65

  • Garric J, Vollat B, Duis K, Péry ARR, Junker T, Ramil M, Fink G, Ternes TA (2007) Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere 69:903–910

    Article  CAS  Google Scholar 

  • Grant A, Briggs AD (1998) Toxicity of ivermectin to estuarine and marine invertebrates. Mar Pollut Bull 36:540–541

    Article  CAS  Google Scholar 

  • Halley BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18:1543–1563

    Article  CAS  Google Scholar 

  • Hennessy DR, Alvinerie MR (2002) Pharmacokinetics of the macrocyclic lactones: conventional wisdom and new paradigms. In: Vercruysse J, Rew RS (eds) Macrocyclic lactones in antiparasitic therapy. CABI Publishing, New York, pp 97–124

    Chapter  Google Scholar 

  • Jensen J, Krogh PH, Sverdrup LE (2003) Effects of the antibacterial agents tiamulin, olanquindox and metronidazole and the anthelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola) and Enchytraeus crypticus (Enchytraeidae). Chemosphere 50:437–443

    Article  Google Scholar 

  • Kövecses J, Marcogliese DJ (2005) Avermectins: potential environmental risks and impacts on freshwater ecosystems in Quebec. Scientific and technical report ST-233E. Environment Canada, Quebec Region, St. Lawrence Centre, Montreal

    Google Scholar 

  • Krogh KA, Søeborg T, Brodin B, Halling-Sørensen B (2008a) Sorption and mobility of ivermectin in different soils. J Environ Qual 37:2202–2211

    Article  CAS  Google Scholar 

  • Krogh KA, Björklund E, Loeffler D, Fink G, Halling-Sørensen B, Ternes TA (2008b) Development of an analytical method to determine avermectins in water, sediments and soils using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1211:60–69

    Article  CAS  Google Scholar 

  • Leppänen MT, Kukkonen JVK (1998) Relationship between reproduction, sediment type and feeding of Lumbriculus variegatus (Müller): implications for sediment toxicity testing. Environ Toxicol Chem 17:2196–2202

    Google Scholar 

  • Liebig M, Meller M, Egeler P (2004) Sedimenttoxizitätstests mit aquatischen Oligochaeten—Einfluss verschiedener Futterquellen im künstlichen Sediment auf Reproduktion und Biomasse von Lumbriculus variegatus. Proceedings 5/2004: Statusseminar Sedimentkontakttests. March 24–25, 2004. BfG (Bundesanstalt für Gewässerkunde), Koblenz, Germany, pp 107–119

  • Liebig M, Alonso Fernandez Á, Blübaum-Gronau E, Boxall A, Brinke M, Carbonell G, Egeler P, Fenner K, Fernandez C, Fink G, Garric J, Halling-Sørensen B, Jensen J, Knacker T, Krogh KA, Küster A, Löffler D, Porcel Cots MÁ, Pope L, Prasse C, Römbke J, Rönnefahrt I, Schneider MK, Schweitzer N, Tarazona JV, Ternes TA, Traunspurger W, Wehrhan A, Duis K (accepted) Environmental risk assessment of ivermectin—a case study. Integrated Environmental Assessment and Management

  • Lopes C, Charles S, Vollat B, Garric J (2009) Toxicity of ivermectin on cladocerans: comparison of toxic effects on Daphnia and Ceriodaphnia species. Environ Toxicol Chem 28:2160–2166

    Article  CAS  Google Scholar 

  • Madsen M, Overgaard Nielsen B, Holter P, Pedersen OC, Brøchner Jespersen J, Vagn Jensen KM, Nansen P, Grønvold J (1990) Treating cattle with ivermectin: effects on the fauna and decomposition of dung pats. J Appl Ecol 27:1–15

    Article  Google Scholar 

  • OECD (1992) Guideline for Testing of Chemicals No. 203 “Fish, Acute Toxicity Test”. Organisation for Economic Co-Operation and Development, Paris, France, p 9

    Book  Google Scholar 

  • OECD (2004) OECD Guideline for the Testing of Chemicals No. 218: “Sediment-water chironomid toxicity test using spiked sediment” (adopted April 2004). Organisation for Economic Co-Operation and Development, Paris, France, p 21

    Book  Google Scholar 

  • OECD (2007) OECD Guideline for the Testing of Chemicals No. 225: Sediment-Water Lumbriculus Toxicity Test Using Spiked Sediment (adopted October 2007). Organisation for Economic Co-Operation and Development, Paris, France, p 31

    Book  Google Scholar 

  • Õmura S (2008) Ivermectin: 25 years and still going strong. Int J Antimicrob Ag 31:91–98

    Article  Google Scholar 

  • Prasse C, Löffler D, Ternes TA (2009) Environmental fate of the anthelmintic ivermectin in an aerobic sediment/water system. Chemosphere 77:1321–1325

    Article  CAS  Google Scholar 

  • Riedhammer C, Schwarz-Schulz B (2001) The newly proprosed EU risk assessment concept for the sediment compartment. J Soils Sediments 1(2):105–110

    Article  CAS  Google Scholar 

  • Römbke J, Floate KD, Jochmann R, Schäfer MA, Puniamoorthy N, Knäbe S, Lehmhus J, Rosenkranz B, Scheffczyk A, Schmidt T, Sharples A, Blanckenhorn WU (2009a) Lethal and sublethal toxic effects of a test chemical (ivermectin) on the yellow dung fly Scathophaga stercoraria based on a standardized international ring test. Environ Toxicol Chem 28:2117–2124

    Article  Google Scholar 

  • Römbke J, Krogh KA, Moser T, Scheffczyk A, Liebig M (2009b) Effects of the veterinary pharmaceutical ivermectin on soil invertebrates in laboratory tests. Arch Environ Contam Toxicol. doi:10.1007/s00244-009-9414-8

    Google Scholar 

  • Sanderson H, Laird B, Pope L, Brain R, Wilson C, Johnson D, Bryning G, Peregrine AS, Boxall A, Solomon K (2007) Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol 85:229–240

    Article  CAS  Google Scholar 

  • Schweitzer N, Fink G, Ternes TA, Duis K (2009) Effects of ivermectin-spiked cattle dung on a water-sediment system with the aquatic invertebrates Daphnia magna and Chironomus riparius. Aquatic Toxicology. doi:10.1016/j.aquatox.2009.12.017

    Google Scholar 

  • Shoop W, Soll M (2002) Ivermectin, abamectin and eprinomectin. In: Vercruysse J, Rew RS (eds) Macrocyclic lactones in antiparasitic therapy. CABI Publishing, New York, pp 1–29

    Chapter  Google Scholar 

  • Shoop WL, Mrozik H, Fisher MH (1995) Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol 59:139–156

    Article  CAS  Google Scholar 

  • Steel JW, Wardhaugh KG (2002) Ecological impact of macrocyclic lactones on dung fauna. In: Vercruysse J, Rew RS (eds) Macrocyclic Lactones in Antiparasitic Therapy. CABI Publishing, New York, pp 457–480

    Google Scholar 

  • Strong L, Brown TA (1987) Avermectins in insect control and biology: a review. Bull Entomol Res 77:357–389

    Article  CAS  Google Scholar 

  • Thain JE, Davies IM, Rae GH, Allen YT (1997) Acute toxicity of ivermectin to the lugworm Arenicola marina. Aquaculture 159:47–52

    Article  CAS  Google Scholar 

  • VICH (2004) Environmental impact assessment for veterinary medicinal products phase II guidance. VICH GL 38 (Ecotoxicity Phase II). International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products, London, UK

Download references

Acknowledgements

The present study was part of the project ‘Environmental risk assessment of pharmaceuticals’ (ERAPharm) that was funded within the 6th framework programme of the European Commission (project number SSPI-CT-2003-511135). The authors wish to thank Marika Goth and José Pedro Ferreira (ECT Oekotoxikologie GmbH) for technical assistance during test performance. This article is dedicated to Hans-Joachim Schallnaß (ECT Oekotoxikologie GmbH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Egeler.

Additional information

Responsible editor: Wolfgang Ahlf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egeler, P., Gilberg, D., Fink, G. et al. Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegatus . J Soils Sediments 10, 368–376 (2010). https://doi.org/10.1007/s11368-010-0197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0197-3

Keywords

Navigation