Skip to main content

Advertisement

Log in

Cortical inhibition is reduced following short-term training in young and older adults

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate age-related differences in short-term training adaptations in cortical excitability and inhibition. Thirty young (21.9 ± 3.1 years) and 30 older (72.9 ± 4.6 years) individuals participated in the study. Each participant was randomly assigned to a control (n = 30) or a resistance training (n = 30) group, with equal numbers of young and older subjects in each group. Participants completed 2 days of testing, separated by 2 weeks during which time the training group participated in resistance training of the ankle dorsiflexor muscles three times per week. During each testing session, transcranial magnetic stimulation was used to generate motor evoked potentials (MEPs) and silent periods in the tibialis anterior. Hoffmann reflexes (H-reflexes) and compound muscle action potentials (M-waves) were also evoked via electrical stimulation of the peroneal nerve. At baseline, young subjects had higher maximum voluntary contraction (MVC) force (p = 0.002), larger M-wave amplitude (p < 0.001), and longer duration silent periods (p = 0.01) than older individuals, with no differences in the maximal amplitude of the MEP (p = 0.23) or H-reflex (p = 0.57). In the trained group, MVC increased in both young (17.4 %) and older (19.8 %) participants (p < 0.001), and the duration of the silent period decreased by ~15 and 12 ms, respectively (p < 0.001). Training did not significantly impact MEP (p = 0.69) or H-reflex amplitudes (p = 0.38). There were no significant changes in any measures in the control group (p ≥ 0.19) across the two testing sessions. These results indicate that a reduction in cortical inhibition may be an important neural adaptation in response to training in both young and older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326. doi:10.1152/japplphysiol.00283.2002

    PubMed  Google Scholar 

  • Abbruzzese G, Assini A, Buccolieri A, Marchese R, Trompetto C (1999) Changes of intracortical inhibition during motor imagery in human subjects. Neurosci Lett 263:113–116

    Article  CAS  PubMed  Google Scholar 

  • Andersson SA, Landgren S, Wolsk D (1966) The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat. J Physiol 183:576–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brerro-Saby C, Delliaux S, Steinberg JG, Jammes Y (2008) Fatigue-induced changes in tonic vibration response (TVR) in humans: relationships between electromyographic and biochemical events. Muscle Nerve 38:1481–1489. doi:10.1002/mus.21117

    Article  PubMed  Google Scholar 

  • Carroll TJ, Riek S, Carson RG (2002) The sites of neural adaptation induced by resistance training in humans. J Physiol 544:641–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carroll TJ, Riek S, Carson RG (2001) Reliability of the input–output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112:193–202

    Article  CAS  PubMed  Google Scholar 

  • Christie A, Kamen G (2010) Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve 41:651–660. doi:10.1002/mus.21539

    PubMed  Google Scholar 

  • Christie A, Lester S, LaPierre D, Gabriel DA (2004) Reliability of a new measure of H-reflex excitability. Clin Neurophysiol 115:116–123

    Article  CAS  PubMed  Google Scholar 

  • Cirillo J, Todd G, Semmler JG (2011) Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Eur J Neurosci 34:1847–1856. doi:10.1111/j.1460-9568.2011.07870

    Article  PubMed  Google Scholar 

  • De Beaumont L, Theoret H, Mongeon D, Messier J, Leclerc S, Tremblay S, Ellemberg D, Lassonde M (2009) Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain 132:695–708. doi:10.1093/brain/awn347

    Article  PubMed  Google Scholar 

  • Degtyarenko AM, Kaufman MP (2002) Spinoreticular neurons that receive group III input are inhibited by MLR stimulation. J Appl Physiol 93:92–98. doi:10.1152/japplphysiol.00072.2002

    PubMed  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input–output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    Article  CAS  PubMed  Google Scholar 

  • Eisen A, Entezari-Taher M, Stewart H (1996) Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis. Neurology 46:1396–1404

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Burke D (1990) Projection of thenar muscle afferents to frontal and parietal cortex of human subjects. Electroencephalogr Clin Neurophysiol 77:353–361

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Burke D, McKeon B (1984) The projection of muscle afferents from the hand to cerebral cortex in man. Brain 107(Pt 1):1–13

    Article  PubMed  Google Scholar 

  • Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garvey MA, Ziemann U, Becker DA, Barker CA, Bartko JJ (2001) New graphical method to measure silent periods evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Griffin L, Cafarelli E (2007) Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle. J Electromyogr Kinesiol 17:446–452. doi:10.1016/j.jelekin.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi T, Devita P (2006) Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exerc Sport Sci Rev 34:29–35

    Article  PubMed  Google Scholar 

  • Hunter GR, McCarthy JP, Bamman MM (2004) Effects of resistance training on older adults. Sports Med 34:329–348

    Article  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamen G (2005) Aging, resistance training, and motor unit discharge behavior. Can J Appl Physiol 30:341–351

    Article  PubMed  Google Scholar 

  • Kamen G, Knight CA (2004) Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 59:1334–1338

    Article  PubMed  Google Scholar 

  • Kamen G, Sison SV, Du CC, Patten C (1995) Motor unit discharge behavior in older adults during maximal-effort contractions. J Appl Physiol 79:1908–1913

    CAS  PubMed  Google Scholar 

  • Kidgell DJ, Pearce AJ (2010) Corticospinal properties following short-term strength training of an intrinsic hand muscle. Hum Mov Sci 29:631–641. doi:10.1016/j.humov.2010.01.004

    Article  PubMed  Google Scholar 

  • Knight CA, Kamen G (2001) Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J Electromyogr Kinesiol 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Koceja DM, Mynark RG (2000) Comparison of heteronymous monosynaptic Ia facilitation in young and elderly subjects in supine and standing positions. Int J Neurosci 103:1–17

    Article  CAS  PubMed  Google Scholar 

  • Kumru H, Soto O, Casanova J, Valls-Sole J (2008) Motor cortex excitability changes during imagery of simple reaction time. Exp Brain Res 189:373–378. doi:10.1007/s00221-008-1433-6

    Article  PubMed  Google Scholar 

  • Ling LJ, Honda T, Shimada Y, Ozaki N, Shiraishi Y, Sugiura Y (2003) Central projection of unmyelinated (C) primary afferent fibers from gastrocnemius muscle in the guinea pig. J Comp Neurol 461:140–150. doi:10.1002/cne.10619

    Article  PubMed  Google Scholar 

  • Macaluso A, De Vito G (2004) Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 91:450–472. doi:10.1007/s00421-003-0991-3

    Article  PubMed  Google Scholar 

  • McDonnell MN, Orekhov Y, Ziemann U (2007) Suppression of LTP-like plasticity in human motor cortex by the GABAB receptor agonist baclofen. Exp Brain Res 180:181–186. doi:10.1007/s00221-006-0849-0

    Article  CAS  PubMed  Google Scholar 

  • McNeil CJ, Doherty TJ, Stashuk DW, Rice CL (2005) Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 31:461–467. doi:10.1002/mus.20276

    Article  PubMed  Google Scholar 

  • Oliviero A, Profice P, Tonali PA, Pilato F, Saturno E, Dileone M, Ranieri F, Di Lazzaro V (2006) Effects of aging on motor cortex excitability. Neurosci Res 55:74–77. doi:10.1016/j.neures.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  • Patten C, Kamen G, Rowland DM (2001) Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve 24:542–550

    Article  CAS  PubMed  Google Scholar 

  • Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159:197–205. doi:10.1007/s00221-004-1947-5

    Article  PubMed  Google Scholar 

  • Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546:605–613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogasch NC, Dartnall TJ, Cirillo J, Nordstrom MA, Semmler JG (2009) Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. J Appl Physiol 107:1874–1883. doi:10.1152/japplphysiol.00443.2009

    Article  PubMed  Google Scholar 

  • Rossini PM, Rossini L, Ferreri F (2010) Brain-behavior relations. IEEE Eng Med Biol 29:84-96. doi:10.1109/MEMB.2009.935474

    Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20:S135–45

    Article  CAS  PubMed  Google Scholar 

  • Sale MV, Semmler JG (2005) Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J Appl Physiol 99:1483–1493. doi:10.1152/japplphysiol.00371.2005

    Article  PubMed  Google Scholar 

  • Stinear CM, Byblow WD (2004) Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent. Exp Brain Res 157:351–358. doi:10.1007/s00221-004-1851-z

    Article  PubMed  Google Scholar 

  • Terao Y, Ugawa Y (2002) Basic mechanisms of TMS. J Clin Neurophysiol 19:322–343

    Article  PubMed  Google Scholar 

  • Vie B, Gomez N, Brerro-Saby C, Weber JP, Jammes Y (2013) Changes in stationary upright standing and proprioceptive reflex control of foot muscles after fatiguing static foot inversion. J Biomech 46:1676–1682. doi:10.1016/j.jbiomech.2013.04.005

    Article  PubMed  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2):591–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woods JJ, Furbush F, Bigland-Ritchie B (1987) Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. J Neurophysiol 58:125–137

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by a grant from the American College of Sports Medicine (AD Christie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Christie.

About this article

Cite this article

Christie, A., Kamen, G. Cortical inhibition is reduced following short-term training in young and older adults. AGE 36, 749–758 (2014). https://doi.org/10.1007/s11357-013-9577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9577-0

Keywords

Navigation