Skip to main content
Log in

Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet

  • Published:
AGE Aims and scope Submit manuscript

An Erratum to this article was published on 09 February 2010

Abstract

Experimentally restricting dietary calories, while maintaining adequate dietary nutrient content, extends lifespan in phylogenetically diverse species; thus suggesting the existence of conserved pathways which can modify lifespan in response to energy intake. However, in some cases the impact on longevity may depend on the quality of the energy source. In Drosophila, restriction of dietary yeast yields considerable lifespan extension whereas isocaloric restriction of dietary sugar yields only modest extension, indicating that other diet-responsive pathways can modify lifespan in this species. In rodents, restricting intake of a single amino acid – methionine – extends lifespan. Here we show that dietary methionine can modify lifespan in adult female, non-virgin Oregon-R strain Drosophila fed a chemically defined media. Compared to a diet containing 0.135% methionine and 15% glucose, high dietary methionine (0.405%) shortened maximum lifespan by 2.33% from 86 to 84 days and mean lifespan by 9.55% from 71.7 to 64.9 days. Further restriction of methionine to 0.045% did not extend maximum lifespan and shortened mean lifespan by 1.95% from 71.1 to 70.3 days. Restricting glucose from 15% to 5% while holding methionine at a concentration of 0.135%, modestly extended maximum lifespan by 5.8% from 86 to 91 days, without extending mean lifespan. All these diet-induced changes were highly significant (log-rank p < 0.0001). Notably, all four diets resulted in considerably longer life spans than those typically reported for flies fed conventional yeast and sugar based diets. Such defined diets can be used to identify lifespan-modifying pathways and specific gene-nutrient interactions in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

IGF-1:

Insulin-like growth factor 1

TOR:

Target of rapamycin

References

  • Avruch J, Lin Y, Long X, Murthy S, Ortiz-Vega S (2005) Recent advances in the regulation of the TOR pathway by insulin and nutrients. Curr Opin Clin Nutr Metab Care 8:67–72

    Article  CAS  PubMed  Google Scholar 

  • Benevenga NJ, Yeh MH, Lalich JJ (1976) Growth depression and tissue reaction to the consumption of excess dietary methionine and S-methyl-L-cysteine. J Nutr 106:1714–1720

    CAS  PubMed  Google Scholar 

  • Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA (2002) Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2:239–249

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Rakoczy SG, Uthus EO (2005) Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. Mech Ageing Dev 126:389–398

    Article  CAS  PubMed  Google Scholar 

  • Chapman T, Miyatake T, Smith HK, Partridge L (1998) Interactions of mating, egg production and death rates in females of the Mediterranean fruit fly, Ceratitis capitata. Proc Biol Sci 265:1879–1894

    Article  CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L (2002) Dietary restriction in long-lived dwarf flies. Science 296:319

    Article  CAS  PubMed  Google Scholar 

  • Ekperigin HE, Vohra P (1981) Histopathological and biochemical effects of feeding excess dietary methionine to broiler chicks. Avian Dis 25:82–95

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein A, Benevenga NJ (1984) Developmental changes in the metabolism of 3-methylthiopropionate in the rat. J Nutr 114:1622–1629

    CAS  PubMed  Google Scholar 

  • Gems D, Partridge L (2001) Insulin/IGF signalling and ageing: seeing the bigger picture. Curr Opin Genet Dev 11:287–292

    Article  CAS  PubMed  Google Scholar 

  • Goldfischer S, Grotsky HW, Chang CH, Berman EL, Richert RR, Karmarkar SD, Roskamp JO, Morecki R (1981) Idiopathic neonatal iron storage involving the liver, pancreas, heart, and endocrine and exocrine glands. Hepatology 1:58–64

    Article  CAS  PubMed  Google Scholar 

  • Good TP, Tatar M (2001) Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. J Insect Physiol 47:1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Harper AE, Benevenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50:428–558

    CAS  PubMed  Google Scholar 

  • Hinton T, Ellis J, Noyes DT (1951) Amino acids and growth factors in a chemically defined medium for Drosophila. Physiol Zool 24:335

    CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP (1988a) The influence of dietary protein source on longevity and age-related disease processes of Fischer rats. J Gerontol 43:B5–B12

    CAS  PubMed  Google Scholar 

  • Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP (1988b) Influence of the restriction of individual dietary components on longevity and age-related disease of Fischer rats: the fat component and the mineral component. J Gerontol 43:B13–B21

    CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    Article  CAS  PubMed  Google Scholar 

  • Kimball S, Jefferson L (2006) New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 83:500S–507S

    CAS  PubMed  Google Scholar 

  • Kritchevsky D, Weber MM, Klurfeld DM (1984) Dietary fat versus caloric content in initiation and promotion of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats. Cancer Res 44:3174–3177

    CAS  PubMed  Google Scholar 

  • Kumagai H, Katoh S, Hirosawa K, Kimura M, Hishida A, Ikegaya N (2002) Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia. Kidney Int 62:1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Long X, Ortiz-Vega S, Lin Y, Avruch J (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280:23433–23436

    Article  CAS  PubMed  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    Article  PubMed  Google Scholar 

  • Magwere T, Chapman T, Partridge L (2004) Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J Gerontol Ser A Biol Sci Med Sci 59:3–9

    Google Scholar 

  • Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733

    Article  CAS  PubMed  Google Scholar 

  • Mair W, Piper MD, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:e223

    Article  PubMed  Google Scholar 

  • Masoro EJ (1990) Assessment of nutritional components in prolongation of life and health by diet. Proc Soc Exp Biol Med 193:31–34

    CAS  PubMed  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  CAS  PubMed  Google Scholar 

  • Min KJ, Tatar M (2006a) Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev 127(7)

  • Min KJ, Tatar M (2006b) Drosophila diet restriction in practice: do flies consume fewer nutrients? Mech Ageing Dev 127(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Murtagh-Mark CM, Reiser KM, Harris R Jr, McDonald RB (1995) Source of dietary carbohydrate affects life span of Fischer 344 rats independent of caloric restriction. J Gerontol Ser A Biol Sci Med Sci 50:B148–154

    CAS  Google Scholar 

  • Ni W, Tsuda Y, Sakono M, Imaizumi K (1998) Dietary soy protein isolate, compared with casein, reduces atherosclerotic lesion area in apolipoprotein E-deficient mice. J Nutr 128:1884–1889

    CAS  PubMed  Google Scholar 

  • Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) Low methionine ingestion by rats extends life span. J Nutr 123:269–274

    CAS  PubMed  Google Scholar 

  • Orr WC, Mockett RJ, Benes JJ, Sohal RS (2003) Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J Biol Chem 278:26418–26422

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Pletcher SD, Mair W (2005) Dietary restriction, mortality trajectories, risk and damage. Mech Ageing Dev 126:35–41

    Article  CAS  PubMed  Google Scholar 

  • Piper MD, Mair W, Partridge L (2005) Counting the calories: the role of specific nutrients in extension of life span by food restriction. J Gerontol Ser A Biol Sci Med Sci 60:549–555

    Google Scholar 

  • Pletcher SD (1999) Model fitting and hypothesis testing for age-specific mortality data. J Evol Biol 12:430–439

    Article  Google Scholar 

  • Pletcher SD, Khazaeli AA, Curtsinger JW (2000) Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J Gerontol Ser A Biol Sci Med Sci 55:B381–B389

    CAS  Google Scholar 

  • Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12:712–723

    Article  CAS  PubMed  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. Faseb J 8:1302–1307

    CAS  PubMed  Google Scholar 

  • Russo GT, Friso S, Jacques PF, Rogers G, Cucinotta D, Wilson PW, Ordovas JM, Rosenberg IH, Selhub J (2003) Age and gender affect the relation between methylenetetrahydrofolate reductase C677T genotype and fasting plasma homocysteine concentrations in the Framingham offspring study cohort. J Nutr 133:3416–3421

    CAS  PubMed  Google Scholar 

  • Sang JH (1955) The quantitative nutritional requirements of Drosophila melanogaster. J Exp Biol 33:45

    Article  Google Scholar 

  • Selhub J (2002) Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 6:39–42

    CAS  PubMed  Google Scholar 

  • Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. Jama 270:2693–2698

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  Google Scholar 

  • Stramentinoli G, Gualano M, Catto E, Algeri S (1977) Tissue levels of S-adenosylmethionine in aging rats. J Gerontol 32:392–394

    CAS  PubMed  Google Scholar 

  • Stubbs AK, Wheelhouse NM, Lomax MA, Hazlerigg DG (2002) Nutrient-hormone interaction in the ovine liver: methionine supply selectively modulates growth hormone-induced IGF-I gene expression. J Endocrinol 174:335–341

    Article  CAS  PubMed  Google Scholar 

  • Troen AM, Lutgens E, Smith DE, Rosenberg IH, Selhub J (2003) The atherogenic effect of excess methionine intake. Proc Natl Acad Sci USA 100:15089–15094

    Article  CAS  PubMed  Google Scholar 

  • Uthus EO, Brown-Borg HM (2003) Altered methionine metabolism in long living Ames dwarf mice. Exp Gerontol 38:491–498

    Article  CAS  PubMed  Google Scholar 

  • Uthus EO, Brown-Borg HM (2006) Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech Ageing Dev 127:444–450

    CAS  PubMed  Google Scholar 

  • Villee CA, Bissell HB (1948) Nucleic acids as growth factors in Drosophila. JBC 172(1):59–66

    CAS  Google Scholar 

  • Walker G, Houthoofd K, Vanfleteren JR, Gems D (2005) Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev 126:929–937

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R, Walford R (1988) The retardation of aging and disease by dietary restriction. Thomas, Springfield, Illinois

    Google Scholar 

  • Yokota F, Esashi T, Suzue R (1978) Nutritional anemia induced by excess methionine in rat and the alleviative effects of glycine on it. J Nutr Sci Vitaminol 24:527–533

    CAS  PubMed  Google Scholar 

  • Yui R, Ohno Y, Matsuura ET (2003) Accumulation of deleted mitochondrial DNA in aging Drosophila melanogaster. Genes Genet Syst 78:245–251

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Nutritional control of aging. Exp Gerontol 38:47–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. Department of Agriculture cooperative research agreement 58-1950-4-401 and by pilot grant DAX601 from the Jean Mayer USDA Human Nutrition Research Center on Aging. Thanks to Nathalie Dupin, Fabienne LeRoy, Susan Hiller Troen, and Christine Schueller for technical assistance and to Mary Roberts, Isabelle Draper and Robert Jackson for their advice throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aron M. Troen.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s11357-010-9133-0

About this article

Cite this article

Troen, A.M., French, E.E., Roberts, J.F. et al. Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. AGE 29, 29–39 (2007). https://doi.org/10.1007/s11357-006-9018-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-006-9018-4

Key words

Navigation