Skip to main content
Log in

Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi FA, Grammatopoulos TN, Poczobutt AM, Jones SM, Snell LD, Das M (2008) Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis. Neurochem Res 33:886–901

    Article  CAS  Google Scholar 

  • Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    Article  CAS  Google Scholar 

  • Aschner M, Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S (2013) Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 5

  • Baird DJ, Barber I, Bradley M, Soares AMVM, Calow P (1991) A comparative study of genotype sensitivity to acute toxic stress using clones of Daphnia magna Straus. Ecotoxicol Environ Saf 21(3):257–265

    Article  CAS  Google Scholar 

  • Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190:191–202

    Article  CAS  Google Scholar 

  • Benedetto A, Au C, Avila DS, Milatovic D, Aschner M (2010) Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genet 6:e1001084

    Article  CAS  Google Scholar 

  • Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127

    Article  CAS  Google Scholar 

  • Broderius SJ (1990) Modeling the joint toxicity of xenobiotics to aquatic organisms: basic concepts and approaches. In: Mayes MA, Barron MG (eds) Aquatic toxicology and risk assessment, Vol. 14. STP 1124. American Society for TESTING AND materials, Philadephia, PA, pp 107–127

    Google Scholar 

  • Burton NC, Guilarte TR (2009) Manganese neurotoxicity: lessons learned from longitudinal studies in nonhuman primates. Environ Health Perspect 117:325–332

    Article  CAS  Google Scholar 

  • Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9(5):e96580

    Article  CAS  Google Scholar 

  • Cersosimo MG, Koller WC (2006) The diagnosis of manganese-induced parkinsonism. Neurotoxicology 27:340–346

    Article  CAS  Google Scholar 

  • Chen P, DeWitt MR, Bornhorst J, Soares FA, Mukhopadhyay S, Bowman AB (2015) Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease. Metallomics 7:289–298

    Article  CAS  Google Scholar 

  • Cooper NL, Joseph RB, Kumar A (2009) Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicol Environ Saf 72(5):1523–1528

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940. https://doi.org/10.1007/s10534-010-9329-x

    Article  CAS  Google Scholar 

  • Davies PH, Brinkman SF (1994) Acute and chronic toxicity of manganese to exposed and unexposed rainbow and brown trout. Fort Collins, CO, Colorado Division of Wildlife (Federal Aid Project #F-243R-1) [cited in Reimer, 1999]

  • Flora G, Deepesh G, Tiwari AR (2012) Toxicity of lead: a review with recent updates. InterdiscipToxicol 5(2):47–58 PMC. Web 22 June 2017

    CAS  Google Scholar 

  • Gao G, Wu Y, Guo Y (2003) Survey on chronic occupational hazards in welders. Chin J Ind Med:107–108

  • Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M (2003) Dmt1: a mammalian transporter for multiple metals. Biometals 16:41–54

    Article  CAS  Google Scholar 

  • Gunter TE, Gavin CE, Aschner M, Gunter KK (2006) Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology 27:765–776

    Article  CAS  Google Scholar 

  • Hall J, Haas KL, Freedman JH (2012) Role of MTL-1, MTL-2, and CDR-1 in mediating cadmium sensitivity in Caenorhabditis elegans. Toxicol Sci 128(2):418–426

    Article  CAS  Google Scholar 

  • Harford AJ, Mooney TJ, Trenfield MA, van Dam RA (2015) Manganese toxicity to tropical freshwater species in low hardness water. Environ Toxicol Chem 34(12):2856–2863

    Article  CAS  Google Scholar 

  • Ingersoll RT, Montgomery EB, Aposhian HV (1999) Central nervous system toxicity of manganese. II: cocaine or reserpine inhibit manganese concentration in the rat brain. Neurotoxicology 20:467–476

    CAS  Google Scholar 

  • International Manganese Institute (2009) The chronic toxicity of manganese to the amphipod crustacean Hyalella Azteca using a standardized flow-through experiment. Albany, Oregon, USA

    Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ Toxicol Chem 24(10):2701–2713

    Article  CAS  Google Scholar 

  • Kern CH, Smith DR (2011) Preweaning mn exposure leads to prolonged astrocyte activation and lasting effects on the dopaminergic system in adult male rats. Synapse 65:532–544

    Article  CAS  Google Scholar 

  • Khan K, Factor-Litvak P, Wasserman GA, Liu X, Ahmed E, Parvez F (2011) Manganese exposure from drinking water and children's classroom behavior in Bangladesh. Environ Health Perspect 119:1501–1506

    Article  CAS  Google Scholar 

  • Kraak MHS, Lavy D, Schoon H, Toussaint M, Peeters WHM, van Straalen NM (1994) Ecotoxicity of mixtures of metals to the zebra mussel Dreissena polymorpha. Environ Toxicol Chem 13(1):109–114

    Article  CAS  Google Scholar 

  • Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28

    Article  CAS  Google Scholar 

  • Li MS, Yang SX (2008) Heavy metal contamination in soils and phytoaccumulation in a manganese mine wasteland, South China. Air Soil Water Res 1:31–41

    Article  CAS  Google Scholar 

  • Liang Y, Xiang Q (2004) Occupational health services in PR China. Toxicology 198:45–54

    Article  CAS  Google Scholar 

  • Ma H, Glenn TC, Jagoe CH, Jones KL, Williams PL (2009) A transgenic strain of the nematode C. elegans as a biomonitor for heavy metal contamination. Environ Toxicol Chem 28(6):1311–1318

    Article  CAS  Google Scholar 

  • Marking LL (1985) Toxicity of chemical mixtures. In: Rand GM, Petrocellim SR (eds) Fundamentals of aquatic toxicology: methods and applications. Hemisphere, New York, pp 164–176

    Google Scholar 

  • Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240:219–225

    Article  CAS  Google Scholar 

  • Neal AP, Guilarte TR (2013) Mechanisms of lead and manganese neurotoxicity. Toxicol Res 2:99–114

    Article  CAS  Google Scholar 

  • O’Neal and Zheng (2015) Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep 2(3):315–328

    Article  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA (1997) The fork head transcription factor daf-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  CAS  Google Scholar 

  • Paris I, Segura-Aguilar J (2011) The role of metal ions in dopaminergic neuron degeneration in parkinsonism and parkinson’s disease. Monatshefte für Chemie -Chemical Monthly 142:365–374

    Article  CAS  Google Scholar 

  • Pinsino A, Matranga V, Carmela Roccheri M (2012) Manganese: a new emerging contaminant in the environment. In: Srivastava JK (ed) Environmental Contamination, pp 17–35 ISBN 978-953-51-0120-8

    Google Scholar 

  • Pluskota A, Horzowski E, Bossinger O, Mikecz A (2009) In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence. PLoS One 4(8):e6622

  • Posthuma L, Baerselman R, Van Veen RP, Dirven-Van BEM (1997) Single and joint toxic effects of copper and zinc on reproduction of Enchytraeus crypticusin relation to sorption of metals in soils. Ecotoxicol Environ Saf 38(2):108–121

    Article  CAS  Google Scholar 

  • Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118:586–601

    Article  CAS  Google Scholar 

  • Roh JY, Lee J, Choi J (2006) Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem 25:2946–2956

    Article  CAS  Google Scholar 

  • Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619–631

    Article  CAS  Google Scholar 

  • Settivari R, Levora J, Nass R (2009) The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and Parkinson disease. J Biol Chem 284:35758–35768

    Article  CAS  Google Scholar 

  • Settivari R, VanDuyn N, LeVora J, Nass R (2013) The Nrf2/SKN-1-dependent glutathione S-transferase pi homologue GST-1 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of manganism. Neurotoxicology 38:51–60

    Article  CAS  Google Scholar 

  • Stiernagle T (2006) Maintenance of C. elegans. WormBook, ed. The C. elegans research community, WormBook, https://doi.org/10.1895/wormbook.1.101.1, http://www.wormbook.org

  • Sunda WG, Huntsman SA (1998a) Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environ Sci Technol 32:2961–2968

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998b) Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal diatom. Limnol Oceanogr 43:1467–1475

    Article  CAS  Google Scholar 

  • Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315

    Article  CAS  Google Scholar 

  • Times GRH (2003) Personal injury litigation against welding rod manufacturers. GeneralCologne Re Hazardous Times 1–5

  • Utgikar VP, Chaudhary N, Koeniger A, Tabak HH, Haines JR, Govind R (2004) Toxicity of metals and metal mixtures: analysis of concentration and time dependence for zinc and copper. Water Res 38(17):3651–3658

    Article  CAS  Google Scholar 

  • Van Gestel CAM, Paul JH (1997) Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil. Environ Toxicol Chem 16(6):1177–1186

    Article  Google Scholar 

  • Verity MA (1995) Nervous system. In: Goyer RA, Klaassen CD, Waalkes MP (eds) Metal toxicology. Academic Press, San Diego, pp 199–226

    Chapter  Google Scholar 

  • Vijver MG, Elliott EG, Peijenbury WJ, de Snoo GR (2011) Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Environ Toxicol Chem 30(6):1482–1487

    Article  CAS  Google Scholar 

  • Wah Chu K, Chow KL (2002) Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol 61:53–64

    Article  CAS  Google Scholar 

  • Wang X (2003) 1160 welders’ health condition analysis. Occup Health 19:9–10 [in Chinese]

    Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative medicine and cellular longevity. Volume 2013. Article ID 898034

  • Weltje L (1998) Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Chemosphere 36(12):2643–2660

    Article  CAS  Google Scholar 

  • Williams PL, Dusenbery DB (1990) Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ Toxicol Chem 9:1285–1290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted when C. Lu held a visiting scholar position at the University of Wisconsin-Milwaukee through the support of the Education Department of Guangxi Zhuang Autonomous Region, People’s Republic of China. The work was supported by the University of Wisconsin-Milwaukee through a start-up fund awarded to H. Ma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Ma.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Svoboda, K.R., Lenz, K.A. et al. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans. Environ Sci Pollut Res 25, 15378–15389 (2018). https://doi.org/10.1007/s11356-018-1752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1752-5

Keywords

Navigation