Skip to main content
Log in

Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars

  • Environmental functions of biochar
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ammonium (NH4 +) is a common form of reactive nitrogen in wastewater, and its discharge to water bodies can lead to eutrophication. This study was conducted to understand NH4 + adsorption mechanisms of pine sawdust and wheat straw biochars in aqueous solutions and the factors affecting NH4 + removal. Biochars were produced by pyrolysing pine sawdust at 300 °C (PS300) and 550 °C (PS550) and wheat straw at 550 °C (WS550). Pseudo-second-order and Redlich-Peterson models best fitted the adsorption data. The PS300 showed the highest NH4 + adsorption capacity (5.38 mg g−1), followed by PS550 (3.37 mg g−1) and WS550 (2.08 mg g−1). Higher H/C and O/C ratios of PS300 (0.78 and 0.32, respectively) indicated the greater presence of functional groups on the biochar’s surface as compared to PS550 (0.35 and 0.10, respectively) and WS550 (0.36 and 0.08, respectively), resulting in different NH4 + adsorption through electrostatic interactions. The dominant mechanism for NH4 + adsorption by the biochars was likely chemical bonding and electrostatic interaction of NH4 + with the surface functional groups. Lower pyrolysis temperature resulted in a higher NH4 + adsorption capacity by the pine sawdust biochar. At the same pyrolysis temperature (550 °C), the biochar made with pine sawdust as the feedstock had a higher NH4 + adsorption capacity than biochar made from wheat straw. We conclude that biochars can be efficient absorbents for NH4 + removal from wastewater, and the removal efficiency can be optimised by selecting different feedstocks or the pyrolysis condition for biochar production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdolali A, Guo WS, Ngo HH, Chen SS, Nguyen NC, Tung KL (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung J, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Azizan S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interf Sci 276:47–52

    Article  CAS  Google Scholar 

  • Behnamfard A, Salarirad MM (2009) Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J Hazard Mater 170:127–133

    Article  CAS  Google Scholar 

  • Bolan N, Wong L, Adriano D (2004) Nutrient removal from farm effluents. Bioresour Technol 94:251–260

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 42:3285–3291

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884

    Article  CAS  Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38:2629–2655

    Google Scholar 

  • Cui X, Hao H, Zhang C, He Z, Yang X (2016) Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Sci Total Environ 539:566–575

    Article  CAS  Google Scholar 

  • Ding Y, Liu Y, Wu W, Shi D, Yang M, Zhong Z (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Poll 213:47–55

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One 9(12):e113888

    Article  CAS  Google Scholar 

  • Gao F, Xue Y, Deng P, Cheng X, Yang K (2015) Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures (2015). Chem Speciat Bioavailb 27(2):92–97

    Article  CAS  Google Scholar 

  • Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M (2009) Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem Eng J 145:496–504

    Article  CAS  Google Scholar 

  • Hina K, Hedley M, Camps-Arbestain M, Hanly J (2013) Comparison of pine bark, biochar, and zeolite as sorbents for NH4 +-N removal from water. Clean Soil Air Water 43:86–91

    Article  CAS  Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hollister CC, Bisogni JJ, Lehmann J (2013) Ammonium, nitrate, and phosphate adsorption to solute leaching from biochar prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.). J Environ Qual 42:137–144

    Article  CAS  Google Scholar 

  • Hou J, Huang L, Yang Z, Zhao Y, Deng C, Chen Y, Li X (2016) Adsorption of ammonium on biochar prepared from giant reed. Environ Sci Pollut Res 23:19107–19115

  • Ihsanullah A-KFA, Abusharkh B, Kjaled M, Atieh MA, Nasser MS, Laoui T, Saleh TA, Agarwal S, Tyagi I, Gupta VK (2015) Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J Mol Liq 204:255–263

    Article  CAS  Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433

    Article  CAS  Google Scholar 

  • Ismail ZZ, Hameed BB (2014) A new application of giant reed waste material for ammonium removal. Int J Environ Stud 71:122–138

    Article  CAS  Google Scholar 

  • Jassal RS, Johnson MS, Molodovskaya M, Black TA, Jollymore A, Sveinson K (2015) Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. J Environ Manag 152:140–144

    Article  CAS  Google Scholar 

  • Jellali S, Wahab MA, Anane M, Riahi K, Jedidi N (2011) Biosorption characteristics of ammonium from aqueous solutions onto Posidoni oceanica (L.) fibers. Desalination 270:40–49

    Article  CAS  Google Scholar 

  • Jorgensen TC, Weatherly LR (2003) Ammonia removal from wastewater by ion exchange in presence of organic contaminants. Water Resour 37:1723–1728

    CAS  Google Scholar 

  • Karadag D, Koc Y, Turan M, Armagan B (2006) Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J Hazard Mater 136:604–609

    Article  CAS  Google Scholar 

  • Kavitha D, Namasivayam C (2006) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol 98:14–21

    Article  CAS  Google Scholar 

  • Kizito S, Wu S, Kirui WK, Lei M, Lu Q, Bah H, Dong R (2015) Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ 505:102–112

    Article  CAS  Google Scholar 

  • Kizito S, Wu S, Wandera SM, Guo L, Dong R (2016) Evaluation of ammonium adsorption in biochar-fixed beds for treatment of anaerobically digested swine slurry: experimental optimization and modeling. Sci Tot Environ 563-564:1095–1104

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 1–12

    Google Scholar 

  • Liang Z, Ni J (2009) Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process. J Hazard Mater 166:52–60

    Article  CAS  Google Scholar 

  • Limousin G, Gaudet J-P, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  • Liu H, Dong Y, Liu Y, Wang H (2010a) Screening of novel low-cost adsorbents from agricultural residues to remove ammonium nitrogen from aqueous solution. J Hazard Mater 178(1–3):1132–1136

    Article  CAS  Google Scholar 

  • Liu H, Dong Y, Wang H, Liu Y (2010b) Ammonium adsorption from aqueous solutions by strawberry leaf powder: equilibrium, kinetics and effects of coexisting ions. Desalination 263:70–75

    Article  CAS  Google Scholar 

  • Liu N, Sun Z, Wu Z, Zhan X, Zhang K, Zhao E, Han X (2013a) Adsorption characteristics of ammonium nitrogen by biochar from diverse origins in water. Adv Mater Res 664:305–312

    Article  CAS  Google Scholar 

  • Liu N, Zhou C, Fu S, Ashraf MI, Zhao E, Shi H, Han X, Hong ZB (2013b) Study on characteristics of ammonium nitrogen adsorption by biochar prepared in different temperature. Adv Mater Res 724-725:452–456

    Article  CAS  Google Scholar 

  • Lou K, Rajapaksha AU, Ok YS, Chang SX (2016a) Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions. Chem Speciat Bioavailab 28(1–4):42–50

    Article  CAS  Google Scholar 

  • Lou K, Rajapaksha AU, Ok YS, Chang SX (2016b) Sorption of copper(II) from synthetic oil sands process-affected water (OSPW) by pine sawdust biochars: effects of pyrolysis temperature and steam activation. J Soils Sediments 16(8):2081–2089

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interf Sci 343:463–473

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  • Ok YS, Chang SX, Gao B, Chung H (2015) SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environ Technol Innov 4:206–209

    Article  Google Scholar 

  • Rajapaksha AU, Vithanage M, Jayarathna L, Kumara CK (2011) Natural red earth as a low cost material for arsenic removal: kinetics and the effect of competing ions. Appl Geochem 26:648–654

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284

    Article  CAS  Google Scholar 

  • Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323

    Article  CAS  Google Scholar 

  • Spokas KA, Novak JM, Venterea RT (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350:35–42

    Article  CAS  Google Scholar 

  • Takaya CA, Fletcher LA, Singh S, Anyikude KU, Ross AB (2016) Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 145:518–527

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Thornton A, Pearce P, Parsons SA (2007) Ammonium removal from digested sludge liquors using ion exchange. Water Resour 41:433–439

    CAS  Google Scholar 

  • USEPA (1993) Method 350.1: determination of ammonia nitrogen by semi-automated colorimetry. Online at http://www.caslab.com/EPA-Methods/PDF/EPA-Method-3501.pdf Accessed 17 Oct 2015

  • Wahab MA, Jellali S, Jedidi N (2010) Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour Technol 101:5070–5075

    Article  CAS  Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24

    Article  CAS  Google Scholar 

  • Wang Z, Guo H, Shen F, Yang G, Zhang Y, Zeng Y, Wang L, Xiao H, Deng S (2015a) Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4 +), nitrate (NO3 ), and phosphate (PO4 3−). Chemosphere 119:646–653

    Article  CAS  Google Scholar 

  • Wang B, Lehmann J, Hanley K, Hestrin R, Enders A (2015b) Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere 138:120–126

    Article  CAS  Google Scholar 

  • Wang B, Lehmann J, Hanley K, Hestrin R, Enders A (2016) Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Adv 6:41907–41913

    Article  CAS  Google Scholar 

  • Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AICHE J 20:228–238

    Article  CAS  Google Scholar 

  • Wu FP, Jia ZK, Wang SG, Chang SX, Startsev A (2013) Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol Fertil Soils 49:555–565

    Article  CAS  Google Scholar 

  • Yao ZY, Qi JH, Wang LH (2010) Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J Hazard Mater 174:137–143

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  CAS  Google Scholar 

  • Zeng Z, Zhang S, Li T, Zhao F, He Z, Zhao H, Yang X, Wang H, Zhao J, Rafiq MT (2013) Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J Zhejiang Univ Sci B 14:1152–1161

    Article  CAS  Google Scholar 

  • Zhang M, Zhang H, Xu D, Han L, Niu D, Tian B, Zhang J, Zhang L, Wu W (2011) Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination 271:111–121

    Article  CAS  Google Scholar 

  • Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39

    Article  CAS  Google Scholar 

  • Zhou Z, Yuan J, Hu M (2015) Adsorption of ammonium from aqueous solutions on environmentally friendly barbecue bamboo charcoal: characteristics and kinetic and thermodynamics studies. Environ Prog Sustain Energy 34:655–662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with financial support from an NSERC CREATE Grant that supported the Land Reclamation International Graduate School (LRIGS) and partially supported by an NSERC Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott X. Chang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H.I., Lou, K., Rajapaksha, A.U. et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environ Sci Pollut Res 25, 25638–25647 (2018). https://doi.org/10.1007/s11356-017-8551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8551-2

Keywords

Navigation