Skip to main content
Log in

Influence of polymer composition on the sensitivity towards nitrite and nitric oxide of colorimetric disposable test strips

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The influence of polymer composition on the sensitivity towards nitrite (NO2 ) and nitric oxide (NO) of a series of 19 polymeric hydrogel films has been studied. The polymers, based on the hydrophilic monomer 2-hydroxyethylmethacrylate (HEMA), are able to encapsulate the colorimetric indicator 1,2-diaminoanthraquinone (DAQ) and to respond to NO2 and NO by visual changes. In the case of nitrite, the calculated limits of detection (LOD) for two of the polymeric sensors (10 μM) are very close to the sensitivity estimated for free DAQ in solution (LOD 5 μM), but with the advantage of a solid supported sensor with the format of a disposable test-strip made with affordable starting chemicals. The results are interpreted taking into account the nature and proportions of monomers and cross-linkers used for the synthesis of polymers. Key factors for obtaining sensitive materials are the hydrophilic character of the film along with the utilization of low levels of cross-linker and the use of an acidic monomer, like acrylic acid, as a building block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adarsh N, Shanmugasundaram M, Ramaiah D (2013) Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem 85:10008–10012

    Article  CAS  Google Scholar 

  • Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766

    Article  CAS  Google Scholar 

  • Badr IHA (2001) Nitrite-selective optical sensors based on organopalladium ionophores. Anal Lett 34:2019–2034

    Article  CAS  Google Scholar 

  • Barker SL, Thorsrud BA, Kopelman R (1998) Nitrite- and chloride-selective fluorescent nano-optodes and in vitro application to rat conceptuses. Anal Chem 70:100–104

    Article  CAS  Google Scholar 

  • Beltrán A, Burguete MI, Abánades DR, Pérez-Sala D, Luis SV, Galindo F (2014) Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chem Commun 50:3579–3581

    Article  Google Scholar 

  • Bhakta SA, Borba R, Taba M, Gacía CD, Carrilho E (2014) Determination of nitrite in saliva using microfluidic paper-based analytical devices. Anal Chim Acta 809:117–122

    Article  CAS  Google Scholar 

  • Boo YC, Tressel SL, Jo H (2007) An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor. Nitric Oxide 16:306–312

    Article  CAS  Google Scholar 

  • Borisov SM, Wolfbeis OS (2004) Optical Biosensors. Chem Rev 108:423–461

    Article  Google Scholar 

  • Bru M, Burguete MI, Galindo F, Luis SV, Marín MJ, Vigara L (2006) Cross-linked poly(2-hydroxyethylmethacrylate) films doped with 1,2-diaminoanthraquinone (DAQ) as efficient materials for the colorimetric sensing of nitric oxide and nitrite anion. Tetrahedron Lett 47:1787–1791

    Article  CAS  Google Scholar 

  • Burguete MI, Fabregat V, Galindo F, Izquierdo MA, Luis SV (2009) Improved polyHEMA–DAQ films for the optical analysis of nitrite. Eur Polym J 45:1516–1523

    Article  CAS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PN (2010) The evolution and future of Earth's nitrogen cycle. Science 330:192–196

    Article  CAS  Google Scholar 

  • Cardoso TMG, Garcia PT, Coltro WKT (2015) Colorimetric determination of nitrite in clinical, food and environmental samples using microfluidic devices stamped in paper platforms. Anal Methods 7:7311–7317

    Article  CAS  Google Scholar 

  • Centelles JJ, Fernández-Cancio M, Imperial S (2003) Spectrophotometric determination of nitrites in biological samples using 1,2-diaminoanthraquinone. Potential application to the determination of nitric oxide synthase activity. Anal Lett 36:2139–2149

    Article  CAS  Google Scholar 

  • Christodouelas DC, Nemiroski A, Kumar AA, Whitesides GM (2015) Broadly available imaging devices enable high-quality low-cost photometry. Anal Chem 87:9170–9178

    Article  Google Scholar 

  • Dacres H, Narayanaswamy R (2005) Evaluation of 1,2-diaminoanthraquinone (DAA) as a potential reagent system for detection of NO. Microchim Acta 152:35–45

    Article  CAS  Google Scholar 

  • Daniel WL, Han MS, Lee JS, Mirkin CA (2009) Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131:6362–6363

    Article  CAS  Google Scholar 

  • Demuth C, Spichiger UE (1997) Response function and analytical parameters of nitrite-selective optode membranes in absorbance and fluorescence mode. Anal Chim Acta 355:259–268

    Article  CAS  Google Scholar 

  • Eggins BR (2002) Chemical sensors and biosensors. John Wiley & Sons, Chichester

    Google Scholar 

  • Fabregat V, Izquierdo MA, Burguete MI, Galindo F, Luis SV (2012) Quantum dot–polymethacrylate composites for the analysis of NOx by fluorescence spectroscopy. Inorg Chim Acta 381:212–217

    Article  CAS  Google Scholar 

  • Fabregat V, Izquierdo MA, Burguete MI, Galindo F, Luis SV (2014) Nitric oxide sensitive fluorescent polymeric hydrogels showing negligible interference by dehydroascorbic acid. Eur Polym J 55:108–113

    Article  CAS  Google Scholar 

  • Galindo F, Lima JC, Luis SV, Melo MJ, Parola AJ, Pina F (2005a) Water/humidity and ammonia sensor, based on a polymer hydrogel matrix containing a fluorescent flavylium compound. J Mater Chem 15:2840–2847

    Article  CAS  Google Scholar 

  • Galindo F, Lima JC, Luis SV, Parola AJ, Pina F (2005b) Write–read–erase molecular-switching system trapped in a polymer hydrogel matrix. Adv Funct Mater 15:541–545

    Article  CAS  Google Scholar 

  • Galindo F, Kabir N, Gavrilovic J, Russell DA (2008) Spectroscopic studies of 1,2-diaminoanthraquinone (DAQ) as a fluorescent probe for the imaging of nitric oxide in living cells. Photochem Photobiol Sci 7:126–130

    Article  CAS  Google Scholar 

  • Gross AJ, Kumar VV, Anthony SP (2014) Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions. Anal Chim Acta 842:57–62

    Article  Google Scholar 

  • Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383:1581–1592

    Article  CAS  Google Scholar 

  • Han J, Zhang C, Liu F, Liu B, Han M, Zhou W, Yang L, Zhang Z (2014) Upconversion nanoparticles for ratiometric fluorescence detection of nitrite. Analyst 139:3032–3038

    Article  CAS  Google Scholar 

  • Hetrick EM, Schoenfisch MH (2009) Analytical chemistry of nitric oxide. Annu Rev Anal Chem 2:409–433

    Article  CAS  Google Scholar 

  • Ignarro LJ (2010) Nitric oxide: biology and pathology. Academic Press, San Diego

    Google Scholar 

  • Jayawardane BM, Wei S, McKelvie ID, Kolev SD (2014) Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem 86:7274–7279

    Article  CAS  Google Scholar 

  • Jin P, Chu J, Miao Y, Tan J, Zhang S, Zhu W (2013) A NIR luminescent copolymer based on platinum porphyrin as high permeable dissolved oxygen sensor for microbioreactors. AICHE J 59:2743–2752

    Article  CAS  Google Scholar 

  • Kim HN, Guo Z, Zhu W, Yoon J, Tian H (2011) Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 40:79–93

    Article  CAS  Google Scholar 

  • Kuan CM, York RL, Cheng CM (2015) Lignocellulose-based analytical devices: bamboo as an analytical platform for chemical detection. Sci Rep 5:18570. doi:10.1038/srep18570

    Article  CAS  Google Scholar 

  • Li H, Wan A (2015) Fluorescent probes for real-time measurement of nitric oxide in living cells. Analyst 140:7129–7141

    Article  CAS  Google Scholar 

  • Li X, Tian J, Shen W (2010) Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl Mater Interf 2:1–6

    Article  Google Scholar 

  • Li P, Ding Y, Wang A, Zhou L, Wei S, Zhou Y, Tang Y, Chen Y, Cai C, Lu T (2013) Self-assembly of Tetrakis (3-Trifluoromethylphenoxy) Phthalocyaninato cobalt(II) on Multiwalled carbon nanotubes and their Amperometric sensing application for nitrite. ACS Appl Mater Interf 5:2255–2260

    Article  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E, Cole JA, Benjamin N (2004) Nitrate, bacteria and human health. Nat Rev Microbiol 2:593–602

    Article  CAS  Google Scholar 

  • Maia LB, Moura JJ (2014) How biology handles nitrite. Chem Rev 114:5273–5357

    Article  CAS  Google Scholar 

  • Marin MJ, Thomas P, Fabregat V, Luis SV, Russell DA, Galindo F (2011) Fluorescence of 1,2-diaminoanthraquinone and its nitric oxide reaction product within macrophage cells. Chembiochem 12:2471–2477

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  CAS  Google Scholar 

  • Martínez-Tomé MJ, Esquembre R, Mallavia R, Mateo CR (2010) Development of a dual-analyte fluorescent sensor for the determination of bioactive nitrite and selenite in water samples. J Pharm Biomed Anal 51:484–489

    Article  Google Scholar 

  • McQuade LE, Lippard SJ (2010) Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Curr Opin Chem Biol 14:43–49

    Article  CAS  Google Scholar 

  • Mohr GJ, Wolfbeis OS (1996) Optical nitrite sensor based on a potential-sensitive dye and a nitrite-selective carrier. Analyst 121:1489–1494

    Article  CAS  Google Scholar 

  • Moorcroft MJ, Davis J, Compton RG (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54:785–803

    Article  CAS  Google Scholar 

  • Nagano T, Yoshimura T (2002) Bioimaging of nitric oxide. Chem Rev 102:1235–1270

    Article  CAS  Google Scholar 

  • Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical sensors. Anal Chem 82:4723–4741

    Article  CAS  Google Scholar 

  • Reches M, Mirica KA, Dasgupta R, Dickey MD, Butte MJ, Whitesides GM (2010) Thread as a matrix for biomedical assays. ACS Appl Mater Interf 2:1722–1728

    Article  CAS  Google Scholar 

  • Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F (2013) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem Soc Rev 42:3489–3613

    Article  CAS  Google Scholar 

  • Shen L, Lu X, Tian H, Zhu W (2011) A long wavelength fluorescent hydrophilic copolymer based on Naphthalenediimide as pH sensor with broad linear response range. Macromolecules 44:5612–5618

    Article  CAS  Google Scholar 

  • Shen Y, Zhang Q, Qian X, Yang Y (2015) Practical assay for nitrite and Nitrosothiol as an alternative to the Griess assay or the 2,3-Diaminonaphthalene assay. Anal Chem 87:1274–1280

    Article  CAS  Google Scholar 

  • Tennenbaum SR, Correa P (1985) Nitrate and gastric cancer risks. Nature 317:675–676

    Article  Google Scholar 

  • Wolfbeis OS (2004) Optical technology until the year 2000: an historial overview. In: Narayanaswami R, Wolfbeis OS (eds) chapter 1In optical sensors, vol 1. Springer-Verlag, Berlin, pp. 1–34

    Chapter  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking wàter quality, 4th ed. Geneva

  • Xia Q, Mao Y, Wu J, Shu T, Yi T (2014) Two-component organogel for visually detecting nitrite anion. J Mater Chem C 2:1854–1861

    Article  CAS  Google Scholar 

  • Yang S, Wo Y, Meyerhoff ME (2014) Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores. Anal Chim Acta 843:89–96

    Article  CAS  Google Scholar 

  • Yilong Z, Dean Z, Li D (2015) Electrochemical and other methods for detection and determination of dissolved nitrite: a review. Int J Electrochem Sci 10: 1144–1168

  • Zacharia IG, Deen WM (2005) Diffusivity and solubility of nitric oxide in water and saline. Ann Biomed Eng 33:214–222

    Article  Google Scholar 

  • Zurcher DM, Adhia YJ, Díaz Romero J, McNeil A (2014) Modifying a known gelator scaffold for nitrite detection. Chem Commun 50:7813–7816

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish MINECO (CTQ2015-68429-R) and Fundació Caixa Castelló-UJI (P1·1B2015-76) is acknowledged. V. F. thanks the financial support from UJI (predoctoral fellowship). We thank SCIC/UJI for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Galindo or Santiago V. Luis.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabregat, V., Burguete, M.I., Galindo, F. et al. Influence of polymer composition on the sensitivity towards nitrite and nitric oxide of colorimetric disposable test strips. Environ Sci Pollut Res 24, 3448–3455 (2017). https://doi.org/10.1007/s11356-016-8068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8068-0

Keywords

Navigation