Skip to main content
Log in

Impact of arsenic(V) on testicular oxidative stress and sperm functional attributes in Swiss albino mice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The arsenic (As) is a multi system effector including reproduction. The present study examined the association of graded doses of As(V) on testicular microenvironment and sperm function in mice. Thirty-six adult male mice were randomly assigned to six groups (n = 6). Group A served as control without test chemical. The groups B, C, D, E, and F were administered graded doses of 10, 25, 50, 100, and 200 ppm As(V), respectively, through drinking water for 40 days. A dose-dependant significant (P < 0.05) decrements were observed in epididymal sperm kinematic attributes (progressive motility, rapid, fast progressive, VCL, VSL, VAP, LIN, STR, WOB and TYPE A (STR >80 %, ALH 2.5 μm) by CASA), viability, plasma membrane functional integrity, and mitochondrial membrane potential which were associated with insignificant decrease in serum testosterone levels. The histoarchitectural studies of testes showed progressive loss of spermatozoa concentration in the seminiferous tubules as the As(V) dose increased. The mice exposed to As(V) had an increase in the As accumulation, protein carbonylation, and lipid peroxidation levels associated with alterations in SOD, CAT, and GST activities in the testes. In conclusion, higher doses of As(V) (more than 50 ppm) were found to be testicular toxicants which impaired semen quality by inducing oxidative stress in the testicular microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeyemi A, Garelick H, Priest ND (2010) A biokinetic model to describe the distribution and excretion of arsenic by man following acute and chronic intakes of arsenite/arsenate compounds by ingestion. Hum Exp Toxicol 29:891–902. doi:10.1177/0960327110364912

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Apostoli P, Catalani S (2011) Metal ions affecting reproduction and development. Met Ions Life Sci 8:263–303

    CAS  Google Scholar 

  • ATSDR (2013) Toxicological profiles, the priority list of hazardous substances. Atlanta, GA 30333

  • Ballentine R, Burford DD (1957) Determination of metals (Na, K, Mg, Ca, Mn, Fe, Co, Cu, Zn). In: Methods in enzymology, vol Volume 3. Academic Press, pp 1002–1035. doi:10.1016/S0076-6879(57)03493-X

  • Biswas J, Roy S, Mukherjee S, Sinha D, Roy M (2010) Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. Asian Pac J Cancer Prev 11:239–247

    Google Scholar 

  • Chiou TJ, Chu ST, Tzeng WF, Huang YC, Liao CJ (2008) Arsenic trioxide impairs spermatogenesis via reducing gene expression levels in testosterone synthesis pathway. Chem Res Toxicol 21:1562–1569. doi:10.1021/tx700366x

    Article  CAS  Google Scholar 

  • Csanaky I, Gregus Z (2001) Effect of phosphate transporter and methylation inhibitor drugs on the disposition of arsenate and arsenite in rats. Toxicol Sci 63:29–36

    Article  CAS  Google Scholar 

  • Danielsson BR, Dencker L, Lindgren A, Tjalve H (1984) Accumulation of toxic metals in male reproduction organs. Arch Toxicol Suppl 7:177–180

    Article  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187:201–210. doi:10.1016/j.toxlet.2009.03.001

    Article  CAS  Google Scholar 

  • Dua TK, Dewanjee S, Gangopadhyay M, Khanra R, Zia-Ul-Haq M, De Feo V (2015) Ameliorative effect of water spinach, Ipomea aquatica (Convolvulaceae), against experimentally induced arsenic toxicity. J Transl Med 13:81. doi:10.1186/s12967-015-0430-3

    Article  Google Scholar 

  • Garcia-Nino WR, Pedraza-Chaverri J (2014) Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 69:182–201. doi:10.1016/j.fct.2014.04.016

    Article  CAS  Google Scholar 

  • Goodson SG, Zhang Z, Tsuruta JK, Wang W, O’Brien DA (2011) Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol Reprod 84:1207–1215. doi:10.1095/biolreprod.110.088989

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Fleischner G, Gatmaitan Z, Arias IM, Jakoby WB (1974) The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci U S A 71:3879–3882

    Article  CAS  Google Scholar 

  • Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S, Slavkovich V et al (2013) Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ Health Perspect 121:1068–1074. doi:10.1289/ehp.1205727

    Google Scholar 

  • Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50. doi:10.1146/annurev.nu.16.070196.000341

    Article  CAS  Google Scholar 

  • Han YH, Kim SZ, Kim SH, Park WH (2008) Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Lett 270:40–55. doi:10.1016/j.canlet.2008.04.041

    Article  CAS  Google Scholar 

  • Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J (2013) Toxicity of arsenic(III) on isolated liver mitochondria: a new mechanistic approach. Iran J Pharm Res 12:121–138

    CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  Google Scholar 

  • Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W (1998) The effects of antioxidant supplementation during Percoll preparation on human sperm DNA integrity. Hum Reprod 13:1240–1247

    Article  CAS  Google Scholar 

  • Jahan S, Iftikhar N, Ullah H, Rukh G, Hussain I (2015) Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study. Syst Biol Reprod Med 61:89–95. doi:10.3109/19396368.2014.998350

    Article  CAS  Google Scholar 

  • Jana K, Jana S, Samanta PK (2006) Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol 4:9. doi:10.1186/1477-7827-4-9

    Article  Google Scholar 

  • Jeyendran RS, Van der Ven HH, Zaneveld LJ (1992) The hypoosmotic swelling test: an update. Arch Androl 29:105–116

    Article  CAS  Google Scholar 

  • Kadirvel R, Sundaram K, Mani S, Samuel S, Elango N, Panneerselvam C (2007) Supplementation of ascorbic acid and alpha-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Hum Exp Toxicol 26:939–946. doi:10.1177/0960327107087909

    Article  CAS  Google Scholar 

  • Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275:33404–33408. doi:10.1074/jbc.M007030200

    Article  CAS  Google Scholar 

  • Kharroubi W, Dhibi M, Mekni M, Haouas Z, Chreif I, Neffati F et al (2014) Sodium arsenate induce changes in fatty acids profiles and oxidative damage in kidney of rats. Environ Sci Pollut Res Int 21:12040–12049. doi:10.1007/s11356-014-3142-y

    Article  CAS  Google Scholar 

  • Kim YJ, Chung JY, Lee SG, Kim JY, Park JE, Kim WR et al (2011) Arsenic trioxide-induced apoptosis in TM4 Sertoli cells: the potential involvement of p21 expression and p53 phosphorylation. Toxicology 285:142–151. doi:10.1016/j.tox.2011.04.013

    Article  CAS  Google Scholar 

  • Lerner S (2010) Sacrifice zones: the front lines of toxic chemical exposure in the United States, pp 292

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER (1990) [49] Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology, vol 186. Academic Press, pp 464–478

  • Li SG, Ding YS, Niu Q, Xu SZ, Pang LJ, Ma RL et al (2015) Grape seed proanthocyanidin extract alleviates arsenic-induced oxidative reproductive toxicity in male mice. Biomed Environ Sci 28:272–280. doi:10.3967/bes2015.038

  • Luna LG (1968) Manual of histologic staining methods; of the Armed Forces Institute of Pathology. Edited by Lee G. Luna. Blakiston Division, McGraw-Hill

  • Makker K, Agarwal A, Sharma R (2009) Oxidative stress & male infertility. Indian J Med Res 129:357–367

    CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. doi:10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  Google Scholar 

  • Mata-Campuzano M, Alvarez-Rodriguez M, del Olmo E, Fernandez-Santos MR, Garde JJ, Martinez-Pastor F (2012) Quality, oxidative markers and DNA damage (DNA) fragmentation of red deer thawed spermatozoa after incubation at 37 degrees C in presence of several antioxidants. Theriogenology 78:1005–1019. doi:10.1016/j.theriogenology.2011.12.018

    Article  CAS  Google Scholar 

  • Mdhluli MC, van der Horst G (2002) The effect of oleanolic acid on sperm motion characteristics and fertility of male Wistar rats. Lab Anim 36:432–437. doi:10.1258/002367702320389107

    Article  CAS  Google Scholar 

  • Momeni HR, Eskandari N (2012) Effect of vitamin E on sperm parameters and DNA integrity in sodium arsenite-treated rats. Iran J Reprod Med 10:249–256

    CAS  Google Scholar 

  • Moore HD, Akhondi MA (1996) Fertilizing capacity of rat spermatozoa is correlated with decline in straight-line velocity measured by continuous computer-aided sperm analysis: epididymal rat spermatozoa from the proximal cauda have a greater fertilizing capacity in vitro than those from the distal cauda or vas deferens. J Androl 17:50–60

    CAS  Google Scholar 

  • Nandi D, Patra RC, Swarup D (2006) Oxidative stress indices and plasma biochemical parameters during oral exposure to arsenic in rats. Food Chem Toxicol 44:1579–1584. doi:10.1016/j.fct.2006.04.013

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Omura M, Tanaka A, Hirata M, Zhao M, Makita Y, Inoue N et al (1996) Testicular toxicity of gallium arsenide, indium arsenide, and arsenic oxide in rats by repetitive intratracheal instillation. Fundam Appl Toxicol 32:72–78

  • Pant N, Murthy RC, Srivastava SP (2004) Male reproductive toxicity of sodium arsenite in mice. Hum Exp Toxicol 23:399–403

    Article  CAS  Google Scholar 

  • Pineda J, Herrera A, Antonio MT (2013) Comparison between hepatic and renal effects in rats treated with arsenic and/or antioxidants during gestation and lactation. J Trace Elem Med Biol 27:236–241. doi:10.1016/j.jtemb.2012.12.006

    Article  CAS  Google Scholar 

  • Rizwan S, Naqshbandi A, Farooqui Z, Khan AA, Khan F (2014) Protective effect of dietary flaxseed oil on arsenic-induced nephrotoxicity and oxidative damage in rat kidney. Food Chem Toxicol 68:99–107. doi:10.1016/j.fct.2014.03.011

    Article  CAS  Google Scholar 

  • Rosenblatt AE, Burnstein KL (2009) Inhibition of androgen receptor transcriptional activity as a novel mechanism of action of arsenic. Mol Endocrinol 23:412–421. doi:10.1210/me.2008-0235

    Article  CAS  Google Scholar 

  • Sancha AM, Castro ML (2001) Arsenic in Latin America: occurrence, exposure, health effects and remediation. Arsenic exposure and health effects IV. Elsevier, Amsterdam

    Google Scholar 

  • Sanghamitra S, Hazra J, Upadhyay SN, Singh RK, Amal RC (2008) Arsenic induced toxicity on testicular tissue of mice. Indian J Physiol Pharmacol 52:84–90

    Google Scholar 

  • Sarkar M, Chaudhuri GR, Chattopadhyay A, Biswas NM (2003) Effect of sodium arsenite on spermatogenesis, plasma gonadotrophins and testosterone in rats. Asian J Androl 5:27–31

    CAS  Google Scholar 

  • Selvaraju S, Reddy IJ, Nandi S, Rao SB, Ravindra JP (2009) Influence of IGF-I on buffalo (Bubalus bubalis) spermatozoa motility, membrane integrity, lipid peroxidation and fructose uptake in vitro. Anim Reprod Sci 113:60–70. doi:10.1016/j.anireprosci.2008.08.011

    Article  CAS  Google Scholar 

  • Selvaraju S, Sivasubramani T, Raghavendra BS, Raju P, Rao SB, Dineshkumar D, Ravindra JP (2012) Effect of dietary energy on seminal plasma insulin-like growth factor-I (IGF-I), serum IGF-I and testosterone levels, semen quality and fertility in adult rams. Theriogenology 78:646–655. doi:10.1016/j.theriogenology.2012.03.010

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Souza AC, Marchesi SC, Domingues de Almeida Lima G, Ferraz RP, Santos FC, da Matta SL, Machado-Neves M (2015) Effects of sodium arsenite and arsenate in testicular histomorphometry and antioxidants enzymes activities in rats. Biol Trace Elem Res 171:354–62

  • Tacoma Smelter Plume Model Remedies In: Department of Ecology, editor. State of Washington Revised May (2015) Publication Number: 12-09-087

  • Toxics cleanup programme (2015) Department of Ecology, State of Washington. Available at www.ecy.Wa.gov/programs/tcp/area_wide?Aw/toolbox_chap1.html

  • Uckun FM, Liu XP, D’Cruz OJ (2002) Human sperm immobilizing activity of aminophenyl arsenic acid and its N-substituted quinazoline, pyrimidine, and purine derivatives: protective effect of glutathione. Reprod Toxicol 16:57–64

    Article  CAS  Google Scholar 

  • UNICEF (2008) Arsenic Primer Guidance For UNICEF country offices on the investigation and mitigation of arsenic contamination, water, environment and sanitation section programme division UNICEF New York, UNICEF Arsenic Primer © United Nations Children’s Fund (UNICEF), UNICEF 3 UN Plaza, New York

  • US EPA (2000) Arsenic Occurrence in Public Drinking Water Supplies 2000. http://www.epa.gov/OGWDW/arsenic/pdfs/occurrence.pdf EPA-815-R-00-023

  • Uygur R, Aktas C, Caglar V, Uygur E, Erdogan H, Ozen OA (2013) Protective effects of melatonin against arsenic-induced apoptosis and oxidative stress in rat testes. Toxicol Ind Health. doi:10.1177/0748233713512891

    Google Scholar 

  • Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832. doi:10.1177/0960327107084539

    Article  CAS  Google Scholar 

  • Vernet P, Aitken RJ, Drevet JR (2004) Antioxidant strategies in the epididymis. Mol Cell Endocrinol 216:31–39. doi:10.1016/j.mce.2003.10.069

    Article  CAS  Google Scholar 

  • Waalkes MP, Keefer LK, Diwan BA (2000) Induction of proliferative lesions of the uterus, testes, and liver in swiss mice given repeated injections of sodium arsenate: possible estrogenic mode of action. Toxicol Appl Pharmacol 166:24–35. doi:10.1006/taap.2000.8963

    Article  CAS  Google Scholar 

  • Welch AH HD, Focazio MJ, Watkins SA (1998) Arsenic in ground water supplies of the United States. In: Arsenic exposure and health effects. In: San Diego CCW, Abernathy CO, Calderon RL. (eds) Proceedings of the Third International Conference on Arsenic Exposure and Health Effects, July 12–15, San Diego, California, New York: Elsevier Science, pp 9–17

  • Welch AH, Lico MS, Hughes JL (1988) Arsenic in groundwater of the western United States. Ground Water 26:333–347

    Article  CAS  Google Scholar 

  • Xie Y, Trouba KJ, Liu J, Waalkes MP, Germolec DR (2004) Biokinetics and subchronic toxic effects of oral arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in v-Ha-ras transgenic (Tg.AC) mice. Environ Health Perspect 112:1255–1263

    Article  CAS  Google Scholar 

  • Zhou L, Jing Y, Styblo M, Chen Z, Waxman S (2005) Glutathione-S-transferase π inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood 105:1198–1203. doi:10.1182/blood-2003-12-4299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by University Grants Commission, Government of India, India. We are grateful to the Director, ICAR-NIANP, of host Institute for providing necessary facilities to carry out this research work. Authors acknowledge Arangasamy Arunachalam, Rajani chukkath Vijayan, Parthipan Shivashanmugam, Binsila B. Krishnan, and Lakshminarayana Somashekar for their technical suggestions and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Janivara Parameswaraiah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guvvala, P.R., Sellappan, S. & Parameswaraiah, R.J. Impact of arsenic(V) on testicular oxidative stress and sperm functional attributes in Swiss albino mice. Environ Sci Pollut Res 23, 18200–18210 (2016). https://doi.org/10.1007/s11356-016-6870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6870-3

Keywords

Navigation