Skip to main content
Log in

On the Application of Xe+ Plasma FIB for Micro-fabrication of Small-scale Tensile Specimens

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In order to perform site-specific mechanical studies to examine the contribution or interaction of a material constituent, a reliable methodology for the production of small-scale samples is required. With the high milling rates achievable with the newly developed Xe+ plasma FIB (PFIB), it is now possible to manufacture specimens approaching the smallest representative volume (SRV). In this study, a methodology has been developed that allows for the manufacture of mesoscale specimens approaching SRV to be tested in tension. It is demonstrated that yield and tensile strength measured in specimens of this scale are representative of bulk behaviour, of the properties measured the strain hardening exponent was found to be dependent on scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wheeler JM, Raghavan R, Chawla V, Morstein M, Michler J (2014) Deformation of hard coatings at elevated temperatures. Surf Coat Technol 254:382–387. https://doi.org/10.1016/j.surfcoat.2014.06.048

    Article  Google Scholar 

  2. Kihara Y, Nagoshi T, Chang TFM, Hosoda H, Sato T, Sone M (2015) Tensile behavior of micro-sized specimen fabricated from nanocrystalline nickel film. Microelectron Eng 141:17–20. https://doi.org/10.1016/j.mee.2015.01.001

    Article  Google Scholar 

  3. Ghassemi-Armaki H, Maaß R, Bhat SP, Sriram S, Greer JR, Kumar KS (2014) Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater 62:197–211. https://doi.org/10.1016/j.actamat.2013.10.001

    Article  Google Scholar 

  4. Kiener D, Hosemann P, Maloy SA, Minor AM (2011) In situ nanocompression testing of irradiated copper. Nat Mater 10:608–613. https://doi.org/10.1038/nmat3055

    Article  Google Scholar 

  5. Armstrong DEJ, Hardie CD, Gibson JSKL, Bushby AJ, Edmondson PD, Roberts SG (2015) Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials. J Nucl Mater 462:374–381. https://doi.org/10.1016/j.jnucmat.2015.01.053

    Article  Google Scholar 

  6. Reichardt A, Ionescu M, Davis J, Edwards L, Harrison RP, Hosemann P, Bhattacharyya D (2015) In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film. Acta Mater 100:147–154. https://doi.org/10.1016/j.actamat.2015.08.028

    Article  Google Scholar 

  7. Hosemann P, Shin C, Kiener D (2015) Small scale mechanical testing of irradiated materials. J Mater Res FirstView:1, 26–15. https://doi.org/10.1557/jmr.2015

  8. Rafique M, Chae S, Kim Y-S (2016) Surface, structural and tensile properties of proton beam irradiated zirconium. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 368:120–128. https://doi.org/10.1016/j.nimb.2015.12.001

    Article  Google Scholar 

  9. Kiener D, Minor AM (2011) Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing. Nano Lett 11:3816–3820. https://doi.org/10.1021/nl201890s

    Article  Google Scholar 

  10. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305(80):986–989. https://doi.org/10.1126/science.1098993

    Article  Google Scholar 

  11. Akarapu S, Zbib HM, Bahr DF (2010) Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int J Plast 26:239–257. https://doi.org/10.1016/j.ijplas.2009.06.005

    Article  MATH  Google Scholar 

  12. Kiener D, Motz C, Dehm G (2009) Micro-compression testing: A critical discussion of experimental constraints. Mater Sci Eng A 505:79–87. https://doi.org/10.1016/j.msea.2009.01.005

    Article  Google Scholar 

  13. Frick CP, Clark BG, Orso S, Schneider AS, Arzt E (2008) Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars. Mater Sci Eng A 489:319–329. https://doi.org/10.1016/j.msea.2007.12.038

    Article  Google Scholar 

  14. Miyahara CK, Tada C, Uda T, Igata N (1985) The effects of grain and specimen sizes on mechanical properties of type 316 austenitic stainless steel. J Nucl Mater 30:1–5

    Google Scholar 

  15. Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724. https://doi.org/10.1016/j.pmatsci.2011.01.005

    Article  Google Scholar 

  16. Wheeler R, Pandey A, Shyam A, Tan T, Lara-Curzio E (2015) Small Scale Mechanical Characterization of Thin Foil Materials via Pin Load Microtesting. Exp Mech 55:1375–1387. https://doi.org/10.1007/s11340-015-0020-6

    Article  Google Scholar 

  17. Iqbal F, Ast J, Göken M, Durst K (2012) In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater 60:1193–1200. https://doi.org/10.1016/j.actamat.2011.10.060

    Article  Google Scholar 

  18. Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of Micrometer-Scale Single Crystals in Compression. Annu Rev Mater Res 39:361–386. https://doi.org/10.1146/annurev-matsci-082908-145422

    Article  Google Scholar 

  19. Schneider AS, Kiener D, Yakacki CM, Maier HJ, Gruber PA, Tamura N, Kunz M, Minor AM, Frick CP (2013) Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater Sci Eng A 559:147–158. https://doi.org/10.1016/j.msea.2012.08.055

    Article  Google Scholar 

  20. Kiener D, Grosinger W, Dehm G, Pippan R (2008) A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater 56:580–592. https://doi.org/10.1016/j.actamat.2007.10.015

    Article  Google Scholar 

  21. Xiao Y, Wehrs J, Ma H, Al-Samman T, Korte-Kerzel S, Goken M, Michler J, Spolenak R, Wheeler JM (2017) Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scr Mater 127:191–194. https://doi.org/10.1016/j.scriptamat.2016.08.028

    Article  Google Scholar 

  22. Smith NS, Skoczylas WP, Kellogg SM, Kinion DE, Tesch PP, Sutherland O, Aanesland A, Boswell RW (2006) High brightness inductively coupled plasma source for high current focused ion beam applications. J Vac Sci Technol B 24. https://doi.org/10.1116/1.2366617

  23. Burnett TL, Kelley R, Winiarski B, Contreras L, Daly M, Gholinia A, Burke MG, Withers PJ (2016) Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy. 161:119–129. https://doi.org/10.1016/j.ultramic.2015.11.001

    Article  Google Scholar 

  24. Menon R, Nabhiraj PY (2015) High speed micro-fabrication using inductively coupled plasma ion source based focused ion beam system. Vacuum. 111:166–169. https://doi.org/10.1016/j.vacuum.2014.10.014

    Article  Google Scholar 

  25. Garnier A, Filoni G, Hrnčíř T, Hladík L (2015) Plasma FIB: Enlarge your field of view and your field of applications. Microelectron Reliab 55:2135–2141. https://doi.org/10.1016/j.microrel.2015.07.016

    Article  Google Scholar 

  26. Giannuzzi L, Smith N (2011) TEM Specimen Preparation with Plasma FIB Xe+ Ions. Microsc Microanal 17:646–647. https://doi.org/10.1017/S1431927611004107

    Article  Google Scholar 

  27. Kelley RD, Song K, Van Leer B, Wall D, Kwakman L (2013) Xe+ FIB Milling and Measurement of Amorphous Silicon Damage. Microsc Microanal 19:862–863. https://doi.org/10.1017/S1431927613006302

    Article  Google Scholar 

  28. ASTM Int. (2009) Standard Test Methods for Tension Testing of Metallic Materials. ASTM, West Conshohoken, pp 1–27. https://doi.org/10.1520/E0008_E0008M-16A

    Google Scholar 

  29. Giannuzzi LA, Stevie FA (2005) Introduction To Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer, New York. https://doi.org/10.1007/b101190

    Book  Google Scholar 

  30. Gianola DS, Eberl C (2009) Micro- and nanoscale tensile testing of materials. Jom. 61:24–35. https://doi.org/10.1007/s11837-009-0037-3

    Article  Google Scholar 

  31. Da Fonseca JQ, Mummery PMM, Withers PJ, Materials M, Centre S, Street G, Manchester M (2005) Full-field strain mapping by optical correlation of micrographs. J Microsc 218:9–21

    Article  MathSciNet  Google Scholar 

  32. Gioacchino F, Quinta da Fonseca J (2012) Plastic Strain Mapping with Sub-micron Resolution Using Digital Image Correlation. Exp Mech 53:743–754. https://doi.org/10.1007/s11340-012-9685-2

    Article  Google Scholar 

  33. Echlin MP, Stinville JC, Miller VM, Lenthe WC, Pollock TM (2016) Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium. Acta Mater 114:164–175. https://doi.org/10.1016/j.actamat.2016.04.057

    Article  Google Scholar 

  34. Jiang J, Yang J, Zhang T, Zou J, Wang Y, Dunne FPE, Britton TB (2016) Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys. Acta Mater 117:333–344. https://doi.org/10.1016/j.actamat.2016.07.023

    Article  Google Scholar 

  35. McMurtrey MD, Was GS, Cui B, Robertson I, Smith L, Farkas D (2014) Strain localization at dislocation channel–grain boundary intersections in irradiated stainless steel. Int J Plast 56:219–231. https://doi.org/10.1016/j.ijplas.2014.01.001

    Article  Google Scholar 

  36. Winiarski B, Schajer GS, Withers PJ (2011) Surface Decoration for Improving the Accuracy of Displacement Measurements by Digital Image Correlation in SEM. Exp Mech 52:793–804. https://doi.org/10.1007/s11340-011-9568-y

    Article  Google Scholar 

  37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  Google Scholar 

  38. Dieter GE (1961) Mechanical Metallurgy. McGraw Hill, New York

    Book  Google Scholar 

  39. Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng A 525:68–77. https://doi.org/10.1016/j.msea.2009.06.031

    Article  Google Scholar 

  40. Zhao YH, Guo YZ, Wei Q, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr Mater 59:627–630. https://doi.org/10.1016/j.scriptamat.2008.05.031

    Article  Google Scholar 

  41. Di Gioacchino F, Quinta da Fonseca JJ (2015) An experimental study of the polycrystalline plasticity of austenitic stainless steel. Int J Plast 74:92–109. https://doi.org/10.1016/j.ijplas.2015.05.012

    Article  Google Scholar 

  42. Lunt D, Busolo T, Xu X, Fonseca JQ, Preuss M (2017) Effect of nanoscale α2 precipitation on strain localisation in a two­-phase Ti-alloy. Acta Mater 129:72–82. https://doi.org/10.1016/j.actamat.2017.02.068

    Article  Google Scholar 

  43. Orozco-Caballero A, Lunt D, Robson JD, Quinta da Fonseca J (2017) How magnesium accommodates local deformation incompatibility: a high-resolution digital image correlation study. Acta Mater 133:367–379. https://doi.org/10.1016/j.actamat.2017.05.040

    Article  Google Scholar 

  44. Singh DRP, Chawla N, Tang G, Shen YL (2010) Micropillar compression of Al/SiC nanolaminates. Acta Mater 58:6628–6636. https://doi.org/10.1016/j.actamat.2010.08.025

    Article  Google Scholar 

  45. Shin C, Lim S, Jin HH, Hosemann P, Kwon J (2015) Specimen size effects on the weakening of a bulk metastable austenitic alloy. Mater Sci Eng A 622:67–75. https://doi.org/10.1016/j.msea.2014.11.004

    Article  Google Scholar 

  46. Keller C, Hug E, Retoux R, Feaugas X (2010) TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech Mater 42:44–54. https://doi.org/10.1016/j.mechmat.2009.09.002

    Article  Google Scholar 

  47. Kumar K, Pooleery A, Madhusoodanan K, Singh RN, Chatterjee A, Dutta BK, Sinha RK (2016) Optimisation of thickness of miniature tensile specimens for evaluation of mechanical properties. Mater Sci Eng A 675:32–43. https://doi.org/10.1016/j.msea.2016.08.032

    Article  Google Scholar 

  48. Keller C, Hug E, Feaugas X (2011) Microstructural size effects on mechanical properties of high purity nickel. Int J Plast 27:635–654. https://doi.org/10.1016/j.ijplas.2010.08.002

    Article  MATH  Google Scholar 

  49. Keller C, Hug E (2017) Kocks-Mecking analysis of the size effects on the mechanical behavior of nickel polycrystals. Int J Plast 98:106–122. https://doi.org/10.1016/j.ijplas.2017.07.003

    Article  Google Scholar 

  50. Keller C, Hug E, Habraken AM, Duchêne L (2015) Effect of stress path on the miniaturization size effect for nickel polycrystals. Int J Plast 64:26–39. https://doi.org/10.1016/j.ijplas.2014.07.001

    Article  Google Scholar 

  51. El Kajbaji M, Thibault-Desseaux J, Martinez-Hernandez M, Jacques A, George A (1987) Deformation mechanisms of Σ = 9 bicrystals of silicon. Rev Phys Appl

Download references

Acknowledgements

The authors would like to thank the EPSRC for funding through EP/J021172/1 and also acknowledge the assistance provided by the Manchester X-ray Imaging Facility, which was funded in part by the EPSRC (grants EP/F007906/1, EP/F001452/1 and EP/I02249X/1). This work was supported by the Henry Royce Institute for Advanced Materials, funded through EPSRC grants EP/R00661X/1, EP/S019367/1, EP/P025021/1 and EP/P025498/1. E. Bousser would like to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada through the Postdoctoral Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.D. Smith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A., Donoghue, J., Garner, A. et al. On the Application of Xe+ Plasma FIB for Micro-fabrication of Small-scale Tensile Specimens. Exp Mech 59, 1113–1125 (2019). https://doi.org/10.1007/s11340-019-00528-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00528-w

Keywords

Navigation