Skip to main content
Log in

Tumor Margin Detection Using Quantitative NIRF Molecular Imaging Targeting EpCAM Validated by Far Red Gene Reporter iRFP

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Wide-field surgical excision reduces the chance of residual disease, but can also lead to disfigurement and devastating morbidities when resection is close to critical structures. We hypothesize that near-infrared fluorescence (NIRF) imaging can enable accurate detection of tumor margins for image-guided resection.

Experimental Design

An orthotopic model of human prostate cancer (PCa) was used to assess primary tumor margins using a NIRF-labeled antibody against epithelial cell adhesion molecule (EpCAM). PCa cells stably expressing far red fluorescent gene reporter, iRFP, enabled colocalization with NIRF signals for direct assessment of tumor margins.

Results

Using receiver operating characteristic analysis, far red fluorescence was validated against standard pathology of primary and metastatic lesions with >96 % accuracy. Primary tumor margins were more accurately detected by quantitative NIRF imaging using the EpCAM-targeting antibody as compared to a NIRF-labeled isotype control antibody.

Conclusions

NIRF molecular imaging may enable real-time and accurate assessment of tumor margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lovrics PJ, Cornacchi SD, Vora R, Goldsmith CH, Kahnamoui K (2011) Systematic review of radioguided surgery for non-palpable breast cancer. Eur J Surg Oncol (EJSO) 37:388–397

    Article  CAS  Google Scholar 

  2. Atkins J, Mushawah FA, Appleton CM et al (2012) Positive margin rates following breast-conserving surgery for stage I–III breast cancer: palpable versus nonpalpable tumors. J Surg Res 117:109–115

    Article  Google Scholar 

  3. Iczkowski KA, Lucia MS (2011) Frequency of positive surgical margin at prostatectomy and its effect on patient outcome. Prostate Cancer 2011:1–12

    Google Scholar 

  4. Swindle P, Eastham JA, Ohori M et al (2005) Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol 174:903–907

    Article  PubMed  Google Scholar 

  5. Philip AF, Ahmed MM (2013) Reporting positive surgical margins after radical prostatectomy: time for standardization. BJU Int. doi:10.1111/j.1464-410X.2012.11640.x

  6. Kennedy MD, Jallad KN, Thompson DH, Ben-Amotz D, Low PS (2003) Optical imaging of metastatic tumors using a folate-targeted fluorescent probe. J Biomed Opt 8:636–641

    Article  PubMed  Google Scholar 

  7. Backer MV, Levashova Z, Patel V et al (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509

    Article  PubMed  CAS  Google Scholar 

  8. Lee SB, Hassan M, Fisher R et al (2008) Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 14:3840–3849

    Article  PubMed  CAS  Google Scholar 

  9. Ogawa M, Kosaka N, Longmire MR, Urano Y, Choyke PL, Kobayashi H (2009) Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol Pharm 6:386–395

    Article  PubMed  CAS  Google Scholar 

  10. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101:17867–17872

    Article  PubMed  CAS  Google Scholar 

  11. van Dam GM, Themelis G, Crane LMA et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results. Nat Med 17:1315–1319

    Article  PubMed  Google Scholar 

  12. Valdės PA, Leblond F, Jacobs VL, Wilson BC, Paulsen KD, Roberts DW (2012) Quantitative, spectrally-resolved intraoperative fluorescence imaging. Sci Rep 2:798

    PubMed  Google Scholar 

  13. Hall MA, Pinkston KL, Wilganowski N et al (2012) Comparison of mAbs targeting epithelial cell adhesion molecule for the detection of prostate cancer lymph node metastases with multimodal contrast agents: quantitative small-animal PET/CT and NIRF. J Nucl Med 53:1427–1437

    Article  PubMed  CAS  Google Scholar 

  14. Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL (2012) Use of Panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol 19:3879–3887

    Article  PubMed  Google Scholar 

  15. Savariar EN, Felsen C, Nashi N et al (2013) Real time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell penetrating peptides. Cancer Res 73(2):855–864

    Article  PubMed  CAS  Google Scholar 

  16. Madajewski B, Judy B, Mouchli A et al (2012) Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease. Clin Cancer Res 18:5741–5751

    Article  PubMed  Google Scholar 

  17. Nguyen QT, Olson ES, Aguilera TA et al (2010) Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci 107:4317–4322

    Article  PubMed  CAS  Google Scholar 

  18. Day KE, Beck LN, Heath CH, Huang CC, Zinn KR, Rosenthal EL (2013) Identification of the optimal therapeutic antibody for fluorescent imaging of cutaneous squamous cell carcinoma. Cancer Biol Ther 14(3):271–277

    Article  PubMed  CAS  Google Scholar 

  19. Jain RK (1988) Transvascular and interstitial transport in tumors. Adv Exp Med Biol 242:215–220

    Article  PubMed  CAS  Google Scholar 

  20. Sevick-Muraca EM, Sharma R, Rasmussen JC et al (2008) Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246:734–741

    Article  PubMed  Google Scholar 

  21. Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231

    Article  PubMed  CAS  Google Scholar 

  22. Scheunemann P, Stoecklein NH, Hermann K et al (2009) Occult disseminated tumor cells in lymph nodes of patients with gastric carcinoma. A critical appraisal of assessment and relevance. Langenbeck's Arch Surg 394:105–113

    Article  Google Scholar 

  23. Tveito S, Andersen K, Kåresen R, Fodstad Ø (2011) Analysis of EpCAM positive cells isolated from sentinel lymph nodes of breast cancer patients identifies subpopulations of cells with distinct transcription profiles. Breast Cancer Res 13:R75

    Article  PubMed  Google Scholar 

  24. Cimino A, Halushka M, Illei P, Wu X, Sukumar S, Argani P (2010) Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat 123:701–708

    Article  PubMed  CAS  Google Scholar 

  25. Zellweger T, Ninck C, Bloch M et al (2005) Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer 113:619–628

    Article  PubMed  CAS  Google Scholar 

  26. Shu X, Royant A, Lin MZ et al (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324:804–807

    Article  PubMed  Google Scholar 

  27. Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha VV (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761

    Article  PubMed  CAS  Google Scholar 

  28. Hall MA, Kwon S, Robinson H et al (2011) Imaging prostate cancer lymph node metastases with a multimodality contrast agent. Prostate 72:129–146

    Article  PubMed  Google Scholar 

  29. Gao P, Pinkston KL, Nallapareddy SR, van Hoof A, Murray BE, Harvey BR (2010) Enterococcus faecalis rnjB is required for pilin gene expression and biofilm formation. J Bacteriol 192:5489–5498

    Article  PubMed  CAS  Google Scholar 

  30. Hall MA, Aldrich MB, Azhdarinia A et al (2012) Quantifying multimodal contrast agent biological activity using near-infrared flow cytometry. Contrast Media Molec Imaging 7:338–345

    Article  CAS  Google Scholar 

  31. Zhu B, Rasmussen JC, Lu Y, Sevick-Muraca EM (2010) Reduction of excitation light leakage to improve near-infrared fluorescence imaging for tissue surface and deep tissue imaging. Med Phys 37:5961–5970

    Article  PubMed  Google Scholar 

  32. Zhu B, Tan IC, Rasmussen JC, Sevick-Muraca EM (2012) Validating the sensitivity and performance of near-infrared fluorescence imaging and tomography devices using a novel solid phantom and measurement approach. Technol Cancer Res Treat 11:95–104

    PubMed  CAS  Google Scholar 

  33. Sevick-Muraca EM, Zhu B (2013) The need for performance standards in clinical translation and adoption of fluorescence molecular imaging. Medical physics 40:040402-1-2

    Google Scholar 

  34. Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH (2000) Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med 41:1851–1858

    PubMed  CAS  Google Scholar 

  35. Prabhakar U, Blakey DC, Maeda H, et al. (2013) Challenges and key considerations of the enhanced permeability and retention effect (EPR) for nanomedicine drug delivery in oncology. Cancer Research. doi:10.1158/0008-5472.CAN-12-4561

Download references

Acknowledgments

This research is supported in parts by the Wilson Foundation of Dallas Texas and U54 CA136404 (EMS). We thank Dr. Ron Karni for his critical comments.

Conflict of Interest

The authors declare to have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Sevick-Muraca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 627 kb)

Video 1

(MP4 436 kb)

Video 2

(MP4 628 kb)

Video 3

(MP4 49.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Wu, G., Robinson, H. et al. Tumor Margin Detection Using Quantitative NIRF Molecular Imaging Targeting EpCAM Validated by Far Red Gene Reporter iRFP. Mol Imaging Biol 15, 560–568 (2013). https://doi.org/10.1007/s11307-013-0637-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0637-8

Key words

Navigation