Skip to main content

Advertisement

Log in

Radiation Dose Estimates for [18F]5-Fluorouracil Derived from PET-Based and Tissue-Based Methods in Rats

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Introduction

Radiation dosimetry assessment often begins with measuring pharmaceutical biodistribution in rodents. The traditional approach to dosimetry in rodents involves a radioassay ex vivo of harvested organs at different time points following administration of the radiopharmaceutical. The emergence of small-animal positron emission tomography (PET) presents the opportunity for an alternative method for making radiodosimetry estimates previously employed only in humans and large animals. In the current manuscript, normal-tissue absorbed dose estimates for the 18F-labeled chemotherapy agent [18F]5-fluorouracil ([18F]5-FU) were derived by PET imaging- and by tissue harvesting-based methods in rats.

Methods

Small-animal PET data were acquired dynamically for up to 2 h after injection of [18F]5-FU in anesthetized rats (n = 16). Combined polynomial and exponential functions were used to model the harvesting-based and imaging-based time–activity data. The measured time–activity data were extrapolated to modeled (i.e., Standard Man) human organs and human absorbed doses calculated.

Results

Organ activities derived by imaging-based and by harvesting-based methods were highly correlated (r > 0.999) as were the projected human dosimetry estimates across organs (r = 0.998) obtained with each method. The tissues calculated to receive highest radiation dose by both methods were related to routes of excretion (bladder wall, liver, and intestines). The harvesting-based and imaging-based methods yielded effective dose (ED) of 2.94E−2 and 2.97E−2 mSv/MBq, respectively.

Conclusions

Small-animal PET presents an opportunity for providing radiation dose estimates with statistical and logistical advantages over traditional tissue harvesting-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Tang G, Wang M, Tang X, Luo L, Gan M (2003) Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F]fluoroethyl)-l-tyrosine as oncologic PET tracer. Appl Radiat Isot 58:219–225

    Article  PubMed  CAS  Google Scholar 

  2. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS et al (2001) Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42:1805–1814

    PubMed  CAS  Google Scholar 

  3. Santens P, De Vos F, Thierens H, Decoo D, Slegers G, Dierckx RA et al (1998) Biodistribution and dosimetry of carbon-11-methoxyprogabidic acid, a possible ligand for GABA-receptors in the brain. J Nucl Med 39:307–310

    PubMed  CAS  Google Scholar 

  4. DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE (2002) Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 43:92–96

    PubMed  CAS  Google Scholar 

  5. Deterding TA, Votaw JR, Wang CK, Eshima D, Eshima L, Keil R et al (2001) Biodistribution and radiation dosimetry of the dopamine transporter ligand. J Nucl Med 42:376–381

    PubMed  CAS  Google Scholar 

  6. Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC, Herscovitch P (2003) Biodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 44:1330–1339

    PubMed  CAS  Google Scholar 

  7. ICRP Publication 62: Radiological Protection in Biomedical Research. Annals of the ICRP Volume 22/3: International Commission on Radiological Protection; 1993

  8. Schmidt D, Langen KJ, Herzog H, Wirths J, Holschbach M, Kiwit JC et al (1997) Whole-body kinetics and dosimetry of L-3-123I-iodo-alpha-methyltyrosine. Eur J Nucl Med 24:1162–1166

    PubMed  CAS  Google Scholar 

  9. Ugur O, Kothari PJ, Finn RD, Zanzonico P, Ruan S, Guenther I et al (2002) Ga-66 labeled somatostatin analogue DOTA-DPhe1-Tyr3-octreotide as a potential agent for positron emission tomography imaging and receptor mediated internal radiotherapy of somatostatin receptor positive tumors. Nucl Med Biol 29:147–157

    Article  PubMed  CAS  Google Scholar 

  10. Palm S, Enmon RM Jr., Matei C, Kolbert KS, Xu S, Zanzonico PB et al (2003) Pharmacokinetics and Biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI. J Nucl Med 44:1148–1155

    PubMed  CAS  Google Scholar 

  11. Loevinger R, Budinger T, Watson E (1988) MIRD primer for absorbed dose calculations. Society of Nuclear Medicine, New York, NY

    Google Scholar 

  12. Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R et al (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663–666

    Article  PubMed  CAS  Google Scholar 

  13. Shani J, Wolf W (1977) A model for prediction of chemotherapy response to 5-fluorouracil based on the differential distribution of 5-[18F]fluorouracil in sensitive versus resistant lymphocytic leukemia in mice. Cancer Res 37:2306–2308

    PubMed  CAS  Google Scholar 

  14. Bellemann ME, Brix G, Haberkorn U, Ostertag HJ, Lorenz WJ (1994) Drug-specific 19F NMR and dynamic 18F PET imaging of the cytostatic agent 5-fluorouracil. IEEE Trans Nucl Sci 41:2856–2861

    Article  CAS  Google Scholar 

  15. Bading JR, Alauddin MM, Fissekis JD, Shahinian AH, Joung J, Spector T et al (2000) Blocking catabolism with eniluracil enhances PET studies of 5-[18F]fluorouracil pharmacokinetics. J Nucl Med 41:1714–1724

    PubMed  CAS  Google Scholar 

  16. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, Hohenberger P, Mohler M, Oberdorfer F et al (1998) Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 39:1197–1202

    PubMed  CAS  Google Scholar 

  17. Cristy M, Eckerman K (1987) Specific absorbed fractions of energy at various ages from internal photons sources. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  18. Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS (2004) Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6:149–159

    Article  PubMed  Google Scholar 

  19. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  20. Kirschner A, Ice R, Beierwaltes W (1975) Letters to the editor. J Nucl Med 16:248–249

    CAS  Google Scholar 

  21. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF et al (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    PubMed  CAS  Google Scholar 

  22. Vesselle H, Grierson J, Peterson LM, Muzi M, Mankoff DA, Krohn KA (2003) 18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med 44:1482–1488

    PubMed  CAS  Google Scholar 

  23. Mankoff DA, Peterson LM, Tewson TJ, Link JM, Gralow JR, Graham MM et al (2001) [18F]fluoroestradiol radiation dosimetry in human PET studies. J Nucl Med 42:679–684

    PubMed  CAS  Google Scholar 

  24. Bevington P, Robinson D (1992) Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. McGraw-Hill, New York, NY

    Google Scholar 

  25. ICRP Publication 53: Radiation Dose to Patients from Radiopharmaceuticals. International Commission on Radiological Protection; 1987

  26. Brix G, Bellemann ME, Gerlach L, Haberkorn U (1998) Intra- and extracellular fluorouracil uptake: assessment with contrast-enhanced metabolic F-19 MR imaging. Radiology 209:259–267

    PubMed  CAS  Google Scholar 

  27. Brix G, Bellemann ME, Haberkorn U, Gerlach L, Bachert P, Lorenz WJ (1995) Mapping the biodistribution and catabolism of 5-fluorouracil in tumor-bearing rats by chemical-shift selective 19F MR imaging. Magn Reson Med 34:302–307

    Article  PubMed  CAS  Google Scholar 

  28. Kissel J, Brix G, Bellemann ME, Strauss LG, Dimitrakopoulou-Strauss A, Port R et al (1997) Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 57:3415–3423

    PubMed  CAS  Google Scholar 

  29. Visser GW, Gorree GC, Peters GJ, Herscheid JD (1990) Tissue distribution of [18F]-5-fluorouracil in mice: effects of route of administration, strain, tumour and dose. Cancer Chemother Pharmacol 26:205–209

    Article  PubMed  CAS  Google Scholar 

  30. Shani J, Young D, Schlesinger T, Siemsen JK, Chlebowski RT, Bateman JR et al (1982) Dosimetry and preliminary human studies of 18F-5-fluorouracil. Int J Nucl Med Biol 9:25–35

    Article  PubMed  CAS  Google Scholar 

  31. Hsueh WA, Kesner AL, Gangloff A, Pegram MD, Beryt M, Czernin J et al (2006) Predicting chemotherapy response to paclitaxel with 18F-fluoropaclitaxel and PET. J Nucl Med 47:1995–1999

    PubMed  CAS  Google Scholar 

  32. Gangloff A, Hsueh WA, Kesner AL, Kiesewetter DO, Pio BS, Pegram MD et al (2005) Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with (18)F-fluoropaclitaxel. J Nucl Med 46:1866–1871

    PubMed  CAS  Google Scholar 

  33. Kesner AL, Hsueh W-A, Htet NL, Pio BS, Czernin J, Pegram MD, Phelps ME, Silverman DHS (2007) Biodistribution and predictive value of 18F-fluorocyclophosphamide in mice bearing human breast cancer xenografts. J Nucl Med 48:2021–2027; First published on November 15, 2007

    Google Scholar 

Download references

Acknowledgement

This work is supported by National Institutes of Health/National Cancer Institute, through an ICMIC program grant (project director DHSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. S. Silverman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesner, A.L., Hsueh, WA., Czernin, J. et al. Radiation Dose Estimates for [18F]5-Fluorouracil Derived from PET-Based and Tissue-Based Methods in Rats. Mol Imaging Biol 10, 341–348 (2008). https://doi.org/10.1007/s11307-008-0160-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0160-5

Key words

Navigation