Skip to main content

Advertisement

Log in

Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

In most plants, the contributions of pollen and seed flow to their genetic structures are generally difficult to disentangle. For typical wind-pollinated and wind-dispersed species Engelhardia roxburghiana in a 20-ha natural forest plot in lower subtropic China, because the prevailing wind directions change during its pollen release and seed dispersal seasons, we could compare its genetic structures in different directions, which could result primarily from pollen or seed flow. Furthermore, because the plot has undergone from an open to a closed canopy stage historically, we also examined forest canopy effects on gene flow in different generations and different directions. Using 522 E. roxburghiana individuals mapped in the plot, our results revealed that greater pollen flow led to biased gene flow in the pollen dispersal-predominant direction (pollen direction), while greater seed flow generated less spatial genetic structure in the seed dispersal-predominant direction (seed direction). The results predicted from generalized additive models indicated that canopy closure enhanced resistance to gene flow from the old generation to the new generation. Analyses by landscape genetic models for the new generation revealed that gene flow associated with pollen direction was more strongly affected by canopy than with seed direction. Our study is new by proposing an alternative way to separate effects of the pollen and seed flow on spatial variation patterns in E. roxburghiana. To our knowledge, our study is also the first attempt to use landscape genetic models to represent canopy effects for different dispersal vectors in spatial scales only up to a few hundred meters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe T, Sakamoto T, Nobuhiro T, Kabeya N, Hagino H, Tanaka H (2008) Wind data recorded at Ogawa Forest Reserve, Japan, from November 2003 to April 2006. Bull For Forest Prod Res Inst 7(4):245–266

    Google Scholar 

  • Albaladejo R, Guzmán B, Gonzalez-Martinez SC, Aparicio A (2012) Extensive pollen flow but few pollen donors and high reproductive variance in an extremely fragmented landscape. PLoS One 7(11):e49012. doi:10.1371/journal.pone.0049012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austerlitz F, Dutech C, Smouse PE, Davis F, Sork VL (2007) Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99:193–204. doi:10.1038/sj.hdy.6800983

    Article  CAS  PubMed  Google Scholar 

  • Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990. doi:10.1111/j.0014-3820.2005.tb01037.x

    PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996-2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. – Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)

  • Bensadoun A, Monod H, Angevin F, Makowski D, Messéan A (2014) Modelling of gene flow by a Bayesian approach: a new perspective for decision support. AgBioForum 17(2):213–220

    Google Scholar 

  • Benson JF, Patterson BR, Wheeldon TJ (2012) Spatial genetic and morphologic structure of wolves and coyotes in relation to environmental heterogeneity in a Canis hybrid zone. Mol Ecol 21:5934–5954. doi:10.1111/mec.12045

    Article  PubMed  Google Scholar 

  • Bohrer G, Nathan R, Volis S (2005) Effects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scales. J Ecol 93:1029–1040. doi:10.1111/j.1365-2745.2005.01048.x

    Article  Google Scholar 

  • Bohrer G, Katul GG, Nathan R, Walko RL, Avissar R (2008) Effects of canopy heterogeneity, seed abscission, and inertia on wind-driven dispersal kernels of tree seeds. J Ecol 96:569–580. doi:10.1111/j.1365-2745.2008.01368.x

    Article  Google Scholar 

  • Bohrer G, Katul GG, Walko RL, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Bound-Lay Meteorol 132(3):351–382

  • Bohrerova Z, Bohrer G, Cho KD, Bolch MA, Linden KG (2009) Determining the viability response of pine pollen to atmospheric conditions during long-distance dispersal. Ecol Appl 119(3):656–667. doi:10.1890/07-2088.1

    Article  Google Scholar 

  • Born C, Le Roux P, Spohr C, McGeoch MA, Van Vuuren BJ (2012) Plant dispersal in the sub-Antarctic inferred from anisotropic genetic structure. Mol Ecol 21:184–194. doi:10.1111/j.1365-294X.2011.05372.x

    Article  PubMed  Google Scholar 

  • Burczyk J, Prat D (1997) Male reproductive success in Pseudotsuga menziesii (Mirb.) Franco: the effects of spatial structure and flowering characteristics. Heredity 79:638–647

    Article  Google Scholar 

  • Burczyk J, DiFazio SP, Adams WT (2004) Gene flow in forest trees: how far do genes really travel? For Genet 11(3-4):179–192

    CAS  Google Scholar 

  • Carslaw DC, Beevers SD (2013) Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ Model Softw 40:325–329. doi:10.1016/j.envsoft.2012.09.005

    Article  Google Scholar 

  • Carslaw DC, Beevers SD, Ropkins K, Bell MC (2006) Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos Environ 40:5424–5434. doi:10.1016/j.atmosenv.2006.04.062

    Article  CAS  Google Scholar 

  • Chandler S, Dunwell JM (2008) Gene flow, risk assessment and the environmental release of transgenic plants. Crit Rev Plant Sci 27(1):25–49. doi:10.1080/07352680802053916

    Article  CAS  Google Scholar 

  • Cheung K, Daher N, Kama W, Shafer MM, Ning Z, Schauer JJ, Sioutas C (2011) Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10e2.5) in the Los Angeles area. Atmos Environ 45:2651–2662. doi:10.1016/j.atmosenv.2011.02.066

    Article  CAS  Google Scholar 

  • Cortés AJ, Waeber S, Lexer C, Sedlacek J, Wheeler JA, Van Kleunen M, Bossdorf O, Hoch G, Rixen C, Wipf S, Karrenberg S (2014) Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity 113:233–239. doi:10.1038/hdy.2014.19

    Article  PubMed  Google Scholar 

  • Cox K, Vanden Broeck A, Van Calster H, Mergeay J (2011) Temperature-related natural selection in a wind-pollinated tree across regional and continental scales. Mol Ecol 20:2724–2738. doi:10.1111/j.1365-294X.2011.05137.x

    Article  CAS  PubMed  Google Scholar 

  • Damschen EI, Baker DV, Bohrer G, Nathan R, Orrocka JL, Turner JR, Brudvig LA, Haddadf NM, Levey DJ, Tewksburyh JJ (2014) How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. P Natl Acad Sci USA 111:3484–3489. doi:10.1073/pnas.1308968111

    Article  CAS  Google Scholar 

  • Devey DS, Bateman RM, Fay MF, Hawkins JA (2009) Genetic structure and systematic relationships within the Ophrys fuciflora aggregate (Orchidaceae: Orchidinae): high diversity in Kent and a wind-induced discontinuity bisecting the Adriatic. Ann Bot 104:483–495. doi:10.1093/aob/mcp039

    Article  PubMed  PubMed Central  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627. doi:10.1111/j.1365-294X.1996.tb00357.x

    Article  Google Scholar 

  • Dutech C, Sork VL, Irwin AJ, Smouse PE, Davis FW (2005) Gene flow and fine-scale genetic structure in a wind-pollinated tree species, Quercus lobata (Fagaceaee). Am J Bot 92(2):252–261. doi:10.3732/ajb.92.2.252

    Article  CAS  PubMed  Google Scholar 

  • Fatemi M, Gross CL (2009) Life on the edge—high levels of genetic diversity in a cliff population of Bertya ingramii are attributed to B. rosmarinifolia (Euphorbiaceae). Biol Conserv 142:1461–1468. doi:10.1016/j.biocon.2009.02.014

    Article  Google Scholar 

  • Fowler NL (1988) The effects of environmental heterogeneity in space and time on the regulation of populations and communities. In: Davy AJ, Hutchings MJ, Watkinson AR (eds) Plant population ecology. Blackwell, Oxford, pp 249–269

    Google Scholar 

  • Frantz AC, Pope LC, Etherington TR, Wilson GJ, Burke T (2010) Using isolation-by-distance-based approaches to assess the barrier effect of linear landscape elements on badger (Meles meles) dispersal. Mol Ecol 19:1663–1674. doi:10.1111/j.1365-294X.2010.04605.x

  • Gaino APSC, Silva AM, Moraes MA, Alves PF, Moraes MLT, Freitas MLM, Sebbenn AM (2010) Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva. Conserv Genet 11:1631–1643. doi:10.1007/s10592-010-0046-3

    Article  Google Scholar 

  • Grivet D, Robledo-Arnuncio JJ, Smouse PE, Sork VL (2009) Relative contribution of contemporary pollen and seed dispersal to the effective parental size of seedling population of California valley oak (Quercus lobata, Nee). Mol Ecol 18:3967–3979. doi:10.1111/j.1365-294X.2009.04326.x

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • He J, Li X, Gao D, Zhu P, Wang Z, Wang Z, Ye W, Cao H (2013) Topographic effects on fine-scale spatial genetic structure in Castanopsis chinensis Hance (Fagaceae). Plant Spec Biol 28:87–93. doi:10.1111/j.1442-1984.2011.00365.x

    Article  Google Scholar 

  • Heuertz M, Vekemans X, Hausman J-F, Palada M, Hardy OJ (2003) Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Mol Ecol 12:2483–2495. doi:10.1046/j.1365-294X.2003.01923.x

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683. doi:10.1016/j.tplants.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Dufour A-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103. doi:10.1038/hdy.2008.34

    Article  CAS  PubMed  Google Scholar 

  • Katul GG, Por-porato A, Nathan R, Siqueira M, Soons MB, Poggi D, Horn HS, Levin SA (2005) Mechanistic analytical models for long-distance seed dispersal by wind. Amer Natur 166:368–381. doi:10.1086/432589

    Article  CAS  Google Scholar 

  • Komdeur J, Daan S (2005) Breeding in the monsoon: semi-annual reproduction in the Seychelles warbler (Acrocephalus sechellensis). J Ornithol 146:305–313. doi:10.1007/s10336-005-0008-6

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. doi:10.1111/j.1461-0248.2012.01746.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Lander TA, Klein EK, Stoeckel S, Mariette S, Musch B, Oddou-Muratorio S (2013) Interpreting realized pollen flow in terms of pollinator travel paths and land-use resistance in heterogeneous landscapes. Landscape Ecol 28:1769–1783. doi:10.1007/s10980-013-9920-y

    Article  Google Scholar 

  • Latta RG, Mitton JB (1999) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53:769–776. doi:10.2307/2640717

    Article  Google Scholar 

  • Lee-Yaw JA, Davidson A, McRae BH, Green DM (2009) Do landscape processes predict phylogeographic patterns in the wood frog? Mol Ecol 18:1863–1874. doi:10.1111/j.1365-294X.2009.04152.x

    Article  PubMed  Google Scholar 

  • Li L, Huang Z, Ye W, Cao H, Wei S, Wang Z, Lian J, Sun I-F, Ma K, He F (2009) Spatial distributions of tree species in a subtropical forest of China. Oikos 118:495–502. doi:10.1111/j.1600-0706.2009.16753.x

    Article  Google Scholar 

  • Lu AM, Stone DE, Grauke LJ (1999) Juglandaceae. In: Wu ZY, Raven PH (eds) Flora of China, vol 4. Science Press, Beijing, China and Missouri Botanical Garden Press, St. Louis. USA, p 278

    Google Scholar 

  • Manos PS, Stone DE (2001) Evolution, phylogeny, and systematics of the Juglandaceae. Ann Mo Bot Gard 88:231–269

    Article  Google Scholar 

  • Maurer KD, Bohrer G, Medvigy D, Wright SJ (2013) The timing of abscission affects dispersal distance in a wind-dispersed tropical tree. Funct Ecol 27:208–218. doi:10.1111/1365-2435.12028

    Article  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561. doi:10.1111/j.0014-3820.2006.tb00500.x

    Article  PubMed  Google Scholar 

  • Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724. doi:10.1093/jhered/esi119

    Article  CAS  PubMed  Google Scholar 

  • Millerón M, de Heredia UL, Lorenzo Z, Perea R, Dounavi A, Alonso J, Gil L, Nanos N (2012) Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant Ecol 213:1715–1728. doi:10.1007/s11258-012-0125-2

    Article  Google Scholar 

  • Nathan R, Katul GG (2005) Foliage shedding in deciduous lifts up long-distance seed dispersal by wind. P Natl Acad Sci USA 102:8251–8256. doi:10.1073/pnas.0503048102

    Article  CAS  Google Scholar 

  • Nathan R, Katul GG, Bohrer G, Kuparinen A, Soons MB, Thompson SE, Trakhtenbrot A, Horn HS (2011) Mechanistic models of seed dispersal by wind. Thero Ecol 4:113–132. doi:10.1007/s12080-011-0115-3

    Article  Google Scholar 

  • Nazemosadat MJ, Ghaedamini H (2010) On the relationships between the Madden–Julian oscillation and precipitation variability in Southern Iran and the Arabian Peninsula: atmospheric circulation analysis. J Climate 23:887–904. doi:10.1175/2009JCLI2141

    Article  Google Scholar 

  • O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Rhodes M, Fant JB, Skogen KA (2014) Local topography shapes fine-scale spatial genetic structure in the Arkansas Valley evening primrose, Oenothera harringtonii (Onagraceae). J Hered 105:806–815. doi:10.1093/jhered/esu051

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22. doi:10.1038/sj.hdy.6800542

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: Pattern Analysis, Spatial Statistics, and Geographic Exegesis. Version 2. Methods Ecol Evol 2(3):229–232. doi:10.1111/j.2041-210X.2010.00081.x

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Sant’Anna CS, Sebbenn AM, Klabunde GHF, Bittencourt R, Nodari RO, Mantovani A, dos Reis MS (2013) Realized pollen and seed dispersal within a continuous population of the dioecious coniferous Brazilian pine [Araucaria angustifolia (Bertol.) Kuntze]. Conser Genet 14:601–613. doi:10.1007/s10592-013-0451-5

    Article  Google Scholar 

  • Saro I, Robledo-Arnuncio JJ, González-Pérez MA, Sosa PA (2014) Patterns of pollen dispersal in a small population of the Canarian endemic palm (Phoenix canariensis). Heredity 113:215–223. doi:10.1038/hdy.2014.16

    Article  CAS  PubMed  Google Scholar 

  • Shohami D, Nathan R (2014) Fire-induced population reduction and landscape opening increases gene flow via pollen dispersal in Pinus halepensis. Mol Ecol 23:70–81. doi:10.1111/mec.12506

    Article  CAS  PubMed  Google Scholar 

  • Snäll T, Fogelqcist J, Ribeiro PJ Jr, Lascoux M (2004) Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Mol Ecol 13:2109–2119. doi:10.1111/j.1365-294X.2004.02217.x

    Article  PubMed  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 21:821–836. doi:10.1007/s10980-005-5415-9

    Article  Google Scholar 

  • Steinitz O, Troupin D, Vendramin GG, Nathan R (2011) Genetic evidence for a Janzen–Connell recruitment pattern in reproductive offspring of Pinus halepensis trees. Mol Ecol 20:4152–4164. doi:10.1111/j.1365-294X.2011.05203.x

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514. doi:10.1111/j.1365-294X.2010.04691.x

    Article  PubMed  Google Scholar 

  • Torimaru T, Wennström U, Lindgren D, Wang X-R (2012) Effects of male fecundity, interindividual distance and anisotropic pollen dispersal on mating success in a Scots pine (Pinus sylvestris) seed orchard. Heredity 108:312–321. doi:10.1038/hdy.2011.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trakhtenbrot A, Katul GG, Nathan R (2014) Mechanistic modeling of seed dispersal by wind over hilly terrain. Ecol Model 274:29–40. doi:10.1016/j.ecolmodel.2013.11.029

    Article  Google Scholar 

  • Troxela B, Pianaa M, Ashtona MS, Murphy-Dunning C (2013) Relationships between bole and crown size for young urban trees in the northeastern USA. Urban For Urban Gree 12(2):144–153. doi:10.1016/j.ufug.2013.02.006

    Article  Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2006) Effects of canopy gaps on the genetic structure of Camellia japonica saplings in a Japanese old-growth evergreen forest. Heredity 96:304–310. doi:10.1038/sj.hdy.6800804

    Article  CAS  PubMed  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935. doi:10.1046/j.1365-294X.2004.02076.x

    Article  CAS  PubMed  Google Scholar 

  • Viner BJ, Arritt RW (2012) Small-scale circulations caused by complex terrain affect pollen deposition. Crop Sci 52:904–913

    Article  Google Scholar 

  • Wang ZG, Ye WH, Cao HL, Huang ZL, Lian JY, Li L, Wei SG, Sun IF (2009) Species-topography association in a species-rich subtropical forest of China. Basic Appl Ecol 10:648–655. doi:10.1016/j.baae.2009.03.002

    Article  Google Scholar 

  • Wang ZF, Liang JY, Ye WH, Cao HL, Wang ZM (2014) The spatial genetic pattern of Castanopsis chinensis in a large forest plot with complex topography. Forest Ecol Manag 318:318–325. doi:10.1016/j.foreco.2014.01.042

    Article  Google Scholar 

  • Wood SN (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73(1):3–36. doi:10.1111/j.1467-9868.2010.00749.x

    Article  Google Scholar 

  • Wright SJ, Trakhtenbrot A, Bohrer G, Detto M, Katule GG, Horvitz N, Muller-Landau HC, Jones FA, Nathan R (2008) Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. P Natl Acad Sci USA 105:19084–19089. doi:10.1073/pnas.0802697105

    Article  CAS  Google Scholar 

  • Wu H-C, Cheng M-J, Peng C-F, Yang S-C, Chang H-S, Lin C-H, Wang C-J, Chen I-S (2012) Secondary metabolites from the stems of Engelhardia roxburghiana and their antitubercular activities. Phytochemistry 82:118–127. doi:10.1016/j.phytochem.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  • Xin W, Huang H, Yua L, Shi H, Sheng Y, Wang TTY, Yu L (2012) Three new flavanonol glycosides from leaves of Engelhardtia roxburghiana, and their anti-inflammation, antiproliferative and antioxidant properties. Food Chem 132:788–798. doi:10.1016/j.foodchem.2011.11.038

    Article  CAS  Google Scholar 

  • Ye W-H, Cao H-L, Huang Z-L, Lian J-Y, Wang Z-G, Li L, Wei S-G, Wang Z-M (2008) Community structure of a hm2 lower subtropical evergreen broadleaved forest plot in dinghushan, China. J Plant Ecol (Chinese Version) 32(2):274–286

    Google Scholar 

  • Zhang HD, Wang BS, Zhang CC, Qiu HX (1955) Forest community of Dinghushan in Gaoyao of Guangdong Province. Acta Scientiarum Naturalium Universitatis Sunyatseni 3:159–225

    Google Scholar 

  • Zhang DD, Luo P, Chen Y, Wang ZF, Ye WH, Cao HL (2014) Isolation and characterization of 12 polymorphic microsatellite markers in Engelhardia roxburghiana (Juglandaceae). Silvae Genet 63:109–112

    Google Scholar 

Download references

Acknowledgments

We thank Lin-Fang Wu and Ying Chen for their assistance in collecting samples and performing laboratory analyses. We are grateful to the two anonymous reviewers and editors for their valuable suggestions on how to improve the manuscript. The National Natural Science Foundation of China (31170352, 41371078, 31100312) and the Chinese Forest Biodiversity Monitoring Network funded this study.

Data archiving statement

Sampling locations, microsatellite genotypes file: DRYAD entry https://www.researchgate.net/publication/295712804_Engelhardia_roxburghiana-sample_locations_and_genotypes_data

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Feng Wang.

Additional information

Communicated by A. Kremer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary S1

(DOC 9.51 mb)

Supplementary S2

(PDF 9 kb)

Supplementary S3

(PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZF., Lian, JY., Ye, WH. et al. Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana . Tree Genetics & Genomes 12, 19 (2016). https://doi.org/10.1007/s11295-016-0973-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-0973-3

Keywords

Navigation