Skip to main content
Log in

Prunus microsatellite marker transferability across rosaceous crops

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

A total of 145 microsatellite primer pairs from Prunus DNA sequences were studied for transferability in a set of eight cultivars from nine rosaceous species (almond, peach, apricot, Japanese plum, European plum, cherry, apple, pear, and strawberry), 25 each of almond genomic, peach genomic, peach expressed sequence tags (EST), and Japanese plum genomic, 22 of almond EST, and 23 of apricot (13 EST and 10 genomic), all known to produce single-locus and polymorphic simple-sequence repeats in the species where they were developed. Most primer pairs (83.6%) amplified bands of the expected size range in other Prunus. Transferability, i.e., the proportion of microsatellites that amplified and were polymorphic, was also high in Prunus (63.9%). Almond and Japanese plum were the most variable among the diploid species (all but the hexaploid European plum) and peach the least polymorphic. Thirty-one microsatellites amplified and were polymorphic in all Prunus species studied, 12 of which, covering its whole genome, are proposed as the “universal Prunus set”. In contrast, only 16.3% were transferable in species of other Rosaceae genera (apple, pear, and strawberry). Polymorphic Prunus microsatellites also detected lower levels of variability in the non-congeneric species. No significant differences were detected in transferability and the ability to detect variability between microsatellites of EST and genomic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aranzana MJ, Garcia-Mas J, Carbó J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003a) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    CAS  PubMed  Google Scholar 

  • Aranzana MJ, Carbó J, Arús P (2003b) Microsatellite variability in peach [Prunus persica (L) Batsch.]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352

    CAS  PubMed  Google Scholar 

  • Arulsekar S, Parfitt DE, Kester DE (1986) Comparison of isozyme variability in peach and almond cultivars. J Heredity 77:272–274

    CAS  Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005) Synteny in the Rosaceae. In: Janick J (ed) Plant Breeding Reviews 27:175–211

  • Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Heredity 81:68–71

    Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    CAS  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004a) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D (2004b) Microsatellite genetic linkage maps of myrobalan plum and an almond–peach hybrid—location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Article  CAS  PubMed  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Garcia-Mas J, Monforte AJ, Arús P (2004) Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Syst Evol 248:191–203

    Article  CAS  Google Scholar 

  • Graham J, Smith K, Woodhead M, Russell J (2002) Development and use of simple sequence repeat SSR markers in Rubus species. Mol Ecol Notes 2:250–252

    Article  CAS  Google Scholar 

  • Granger AR, Clarke GR, Jackson JF (1993) Sweet cherry cultivar identification by leaf isozyme polymorphism. Theor Appl Genet 86:458–464

    Article  CAS  Google Scholar 

  • Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745

    Article  CAS  Google Scholar 

  • Hendre PS, Phanindranath R, Annapurna V, Lalremruata A, Aggarwal RK (2008) Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies. BMC Plant Biol 8:51

    Article  PubMed  Google Scholar 

  • Hesse C (1975) Peaches. In: Janick J, Moore J (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 285–335

    Google Scholar 

  • Hormaza JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L et al (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    Article  PubMed  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Nishitani C, Iketani H, Ban Y, Yamamoto T (2006) Development of microsatellite markers in rose. Mol Ecol Notes 2:250–252

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ruder CD, Tarchini R, Weg EVD, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Luro FL, Constantino G, Terol J, Argout X, Allario T, Wincker P, Talón M, Ollitraut P, Morillon R (2008) Transferability of the ESR-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287

    Article  PubMed  Google Scholar 

  • Miller PJ, Parfitt DE, Weinbaum SA (1989) Outcrossing in peach. HortScience 24:359–360

    Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    Article  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Arús P (2005) Development and transportability across Prunus species of forty-two polymorphic almond microsatellites. Mol Ecol Notes 5:531–535

    Article  CAS  Google Scholar 

  • Monfort A, Vilanova S, Davis TM, Arús P (2006) A new set of polymorphic simple sequence repeat (SSR) markers from a wild strawberry (Fragaria vesca) are transferable to other diploid Fragaria species and to Fragaria × ananassa. Mol Ecol Notes 6:197–200

    Article  CAS  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3(1):175–182

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Palop M, Palacios C, González-Candelas F (2000) Development and across-species transferability of microsatellite markers in the genus Limonium (Plumbaginaceae). Conservat Genet 1:177–179

    Article  CAS  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple-sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    CAS  PubMed  Google Scholar 

  • Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Rousseau-Gueutin M, Lerceteau-Köhler E, Barrot L, Sargent DJ, Monfort A, Simpson D, Arús P, Guérin G, Denoyes-Rothan B (2008) Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 179:2045–2060

    Article  PubMed  Google Scholar 

  • Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318

    Article  Google Scholar 

  • Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arús P, Simpson DW, Tobutt KR, Monfort A (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51:120–127

    Article  CAS  PubMed  Google Scholar 

  • Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (eds) Fruit breeding: tree and tropic fruits. Wiley, New York, pp 325–440

    Google Scholar 

  • Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  CAS  PubMed  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, van de Weg WE, van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel C-E, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

    Article  CAS  Google Scholar 

  • Soriano JM, Romero C, Vilanova S, Llácer G, Badenes ML (2005) Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers. Genome 48:108–114

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4:391–402

    Article  Google Scholar 

  • Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Tavaud M (2002) Diversité génétique du cerisier doux (Prunus avium L.) sur son aire de répartition : Comparaison avec ses espèces apparentées (P. cerasus et P. gondouinii) et son compartiment sauvage. Ph.D. thesis. École Nationale Superieure Agronomique de Montpellier (France)

  • Terakami S, Shoda M, Adach Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrels M (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431

    Article  CAS  Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107:239–247

    Article  CAS  PubMed  Google Scholar 

  • Vilanova S, Sargent DJ, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67

    Article  PubMed  Google Scholar 

  • Viruel MA, Sánchez D, Aranzana MJ, Garcia-Mas J, Arús P (2002) Aislamiento, caracterización y herencia de loci microsatélites en fresón (Fragaria x ananassa Dutch.). Acta Hortic 34:615–620

    Google Scholar 

  • Watkins R (1995) Cherry, plum, peach apricot and almond. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Burnt Mill

    Google Scholar 

  • Weeden NF, Lamb RC (1985) Identification of apple cultivars by isozyme phenotypes. J Am Soc Hortic Sci 110:509–515

    CAS  Google Scholar 

  • Wen J, Berggren ST, Lee CH, Ickert-Bond S, Yi TS, Yoo KO, Xie L, Shaw J, Potter D (2008) Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences. J Syst Evol 46:322–332

    Google Scholar 

  • Wünsch A (2009) Cross-transferable polymorphic SSR loci in Prunus species. Sci Hortic 120:348–352

    Article  Google Scholar 

  • Wünsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach (Prunus persica (L.) Batsch) SSR sequences. Heredity 89:56–63

    Article  PubMed  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002) Development of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T (2004) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci 54:239–244

    Article  CAS  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partly funded by a project of the Spanish Ministry of Education (AGL2006-07767/AGR). The group of IRTA is a member of the CONSOLIDER Center for Basic Genomics and Agro-food Orientation (CSD2007-00036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Arús.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S

EST-derived almond microsatellites (DOC 62 kb)

Table 2S

EST-derived peach microsatellites (DOC 63 kb)

Table 3S

Variability of 145 Prunus SSRs in nine rosaceous species (DOC 811 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mnejja, M., Garcia-Mas, J., Audergon, JM. et al. Prunus microsatellite marker transferability across rosaceous crops. Tree Genetics & Genomes 6, 689–700 (2010). https://doi.org/10.1007/s11295-010-0284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0284-z

Keywords

Navigation