Skip to main content

Advertisement

Log in

Influence of Arsenic Stress on Physiological, Biochemical, and Morphological Characteristics in Seedlings of Two Cultivars of Maize (Zea mays L.)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Agricultural practices and industrial growth have contaminated the environment with heavy metals and many other harmful compounds. Arsenic (As) has been highlighted as a major heavy metal affecting growth and development of plants as well as causing severe human health hazards through food chain contamination. Most studies of heavy metal impacts address only one of these aspects, overlooking the effect of pollution on the plant as a whole. In this work, our objective was to determine the effect of arsenic stress on physiological, biochemical, and morphological characteristics in seedlings of two cultivars of maize with different arsenic tolerance. This study investigated the effects of varying levels of arsenic (As) stress on growth, enzymatic characteristics, and cell ultrastructure in seedlings of As-sensitive and As-tolerant maize cultivars (Shiyu No. 9 and Dongdan90, respectively) grown in hydroponic culture. Compared to Shiyu No. 9 at the same As concentration, Dongdan90 maintained higher values of biomass, shoot length, root length, and activity of superoxide dismutase, peroxidases, and catalase, but had lower malondialdehyde content, As accumulation, and non-protein thiol. High As concentrations inhibited the growth of both cultivars, while lower concentrations stimulated it. The As-tolerant cultivar also maintained the structural integrity of cells and tissues more efficiently under As stress. These findings demonstrate a link between the physiological and physical impacts of heavy metals on crop plants that paves the way for improved interventions to deal with heavy metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002). Uptake kinetics of arsenic species in rice plants. PlantPhysiology, 128(3), 1120–1128.

    CAS  Google Scholar 

  • Andre, C. M., Larondelle, Y., & Evers, D. (2010). Dietary antioxidants and oxidative stress from a human and plant perspective: a review. Current Nutrition & Food Science, 6(1), 2–12. doi:10.2174/157340110790909563.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev. Plant. Biol, 55, 373–399. doi:10.1146/annurev.arplant.55.031903.141701.

    Article  CAS  Google Scholar 

  • Assuncao, A. G. L., Da Costa Martins, P., De Folter, S., et al. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 24, 217–226. doi:10.1111/j.1365-3040.2001.00666.x.

    Article  CAS  Google Scholar 

  • Bao SD. (2000). Soil agricultural chemistry analysis, third edition. Beijing, China Agriculture Press (in Chinese), 268–270.

  • Baroni, F., Boscagli, A., Lellaa, L. A. D., et al. (2004). Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). Journal of Geochemical Exploration, 81, 1–14. doi:10.1016/S0375-6742(03)00208-5.

    Article  CAS  Google Scholar 

  • Chaoui, A., Mazhoudi, S., Ghorbal, M. H., et al. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science, 127, 139–147. doi:10.1016/S0168-9452(97)00115-5.

    Article  CAS  Google Scholar 

  • Devi, S. R., & Prasad, M. N. V. (1998). Copper toxicity in Ceratophyllum demersum L. (Coontail), a free-floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Science, 138, 157–165. doi:10.1016/S0168-9452(98)00161-7.

    Article  CAS  Google Scholar 

  • Dhindsa, R. A., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101. doi:10.1093/jxb/32.1.93.

    Article  CAS  Google Scholar 

  • Du, Q. D., Huang, Z. B., Shen, C., et al. (2012). Effect of environmental materials on germination of maize seed under stress of lead, cadmium and arsenic. Journal of Agro-Environment Science, 31(5), 874–879.

    CAS  Google Scholar 

  • Elstner, E. F. (1986). Oxygen activation and oxygen toxicity. Annual Review of Plant Physiology, 33, 73–96. doi:10.1146/annurev.pp.33.060182.000445.

    Article  Google Scholar 

  • Fisher NS, Jones GJ, Nelson DM (1981). Effect of copper and zinc on growth, morphology and metabolism of Asterionella japonica (Cleve). Exp. Biol. Ecol, 51, 37–56. http://dx.doi.org/10.1016/0022-0981(81)90153-2 http://www.sciencedirect.com/science/article/pii/_blankdoi:10.1016/0022-0981(81)90153-2

  • Gabrielli, R., Pandolfini, T., Vergano, O., & Palandri, M. R. (1990). Comparison of two serpentine species with different nickel tolerance strategies. Plant and Soil, 122, 671–693. doi:10.1007/BF02851985.

    Article  Google Scholar 

  • Gao, J. J., Qin, A. G., & Yu, X. C. (2009). Effects of grafting on cucumber leaf SOD and CAT gene expression and activities under low temperature stress. Chinese Journal of Applied Ecology, 20(1), 213–217.

    CAS  Google Scholar 

  • Gu, Z. P., Wang, X., Pan, Y. H., et al. (2010). Effect of arsenic on physiological and biochemical properties of Pteris cretica var. nervosa under two culture conditions. Journal of Agro-Environmental Science, 29(10), 1254–1260.

    CAS  Google Scholar 

  • Guo, X. F., Wei, Z. B., Qu, J. R., et al. (2010). Differences between corn cultivars in accumulation and translocation of heavy metals. Journal of Ecology and Rural Environment, 26(4), 367–371.

    CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in biology and medicine (2nd ed.). Oxford: Clarendon. doi:10.1080/09553009014552071.

    Google Scholar 

  • Hasan, S. A., Fariduddin, Q., Ali, B., Hayat, S., & Ahmad, A. (2009). Cadmium: toxicity and tolerance in plants. Environ Biol, 30, 165–174. doi:10.1016/0098-8472(95)00024-0.

    CAS  Google Scholar 

  • He, J., Ma, H. M., & Xie, Y. H. (2014). Influence of Pb and As on growth of Beijing Sweet 183 and Zhengdan 958 corn. Journal of Shanxi Agricultural Sciences, 42(2), 126–128. doi:10.3969/j.issn.1002-2481.2014.02.06.

    Google Scholar 

  • Hsu, J. M. (1981). Lead toxicity as related to glutathione metabolism. Nutr, 111, 26–33.

    CAS  Google Scholar 

  • Hu, Y. J., Wang, H. J., Wang, H. B., et al. (2015). The relationship between endogenous auxin and antioxidant enzymes in two plants with different arsenic-accumulative ability under arsenic stress. Acta Ecologica Sinica, 35(10), 1–12. doi:10.5846/stxb201312022863.

    Google Scholar 

  • Huang, H. Y., Xu, J., et al. (2011). Adsorption and enrichment character of heavy metal ions in different plants of polluted and abandoned farmland in Dabaoshan mine area. Guangdong Agricultural Science, 20, 142–144.

    Google Scholar 

  • Kieffer, P., Planchon, S., Oufir, M., et al. (2009). Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. Journal of Proteome Research, 8, 400–417. doi:10.1021/pr800561r.

    Article  CAS  Google Scholar 

  • Laura, M., Gabriella, B., Mohammad, W., & Claudio, B. (2014). Morphological changes induced by heavy metals in dandelion (Taraxacum officinale Web.) growing on mine soils. Journal of Soils and Sediments, 14, 731–743. doi:10.1007/s11368-013-0823-y.

    Article  Google Scholar 

  • Li, F. Y. (2001). The influences of lead on wheat seedlings’ some physiological characteristics. Henan Science, 19(2), 209–211.

    Google Scholar 

  • Li KR, Yan BH, Shi YK (2013) Tolerances of tested plants to the heavy metal pollution of coal gangue stack in the south part of Loess Plateau. ACTA AGRESTIA SINICA, 21(6), 1093-1100. doi:10.11733/j.issn.1007-0435.2013.06.009

  • Li, M., & Wang, G. X. (2002). Effect of drought stress on activities of cell defense enzymes and lipid peroxidation in Glycyrrhiza uralensis seedlings. Acta Ecologica Sinica, 22(4), 503–507.

    CAS  Google Scholar 

  • Liu, W. J., Hu, Y., Bi, S. Q., et al. (2006). Study of genotypic differences on arsenic uptake by and translocation in rice seedlings. Chinese Agricultural Science Bulletin, 22(6), 356–360.

    CAS  Google Scholar 

  • Liu, W. T., Zhou, Q. X., Sun, Y. B., & Liu, R. (2009). Variety difference of lead accumulation and translocation in Chinese cabbage (Brassica peckinensis L.). China Environmental Science, 29(1), 63–67.

    Google Scholar 

  • Liu, H. L., Hao, Y. B., Ci, X. K., et al. (2010). The response of different genotypic maize to arsenic. Journal of Nuclear Agricultural Sciences, 24(4), 704–712.

    Google Scholar 

  • Meenakshi, C., Umesh Kumar, J., Mohammed, A. K., et al. (2007). Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicology and Environmental Safety, 66, 204–209. doi:10.1016/j.ecoenv.2006.02.002.

    Article  Google Scholar 

  • Milone, T. M., Sgherri, C., Clijsters, H., & Navari-Izzo, F. (2003). Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany, 50, 265–276. doi:10.1016/S0098-8472(03)00037-6.

    Article  CAS  Google Scholar 

  • Miyake, C., & Asada, K. (1994). Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiology, 35, 539–549.

    Article  CAS  Google Scholar 

  • Motlhanka, D. M. T. (2008). Free radical scavenging activity of selected medicinal plants of Eastern Botswana. Pakistan Journal of Biological Sciences, 11(5), 805–808. doi:10.3923/pjbs.2008.805.808.

    Article  CAS  Google Scholar 

  • Pal, M., Horvath, E., Janda, T., Paldi, E., et al. (2006). Physiological changes and defense mechanisms induced by cadmium stress in maize. Journal of Plant Nutrition and Soil Science, 169, 239–246. doi:10.1002/jpln.200520573.

    Article  CAS  Google Scholar 

  • Pickering, I. J., Prince, R. C., George, M. J., et al. (2000). Reduction and coordination of arsenic in Indian Mustard. Plant Physiology, 122(4), 1171–1177. doi:10.1104/pp.122.4.1171.

    Article  CAS  Google Scholar 

  • Poulter, A., Collin, H. A., Thurman, D. A., et al. (1985). The role of cell wall in the mechanism of lead and zinc tolerance in Anthoxonthum odoratum L. Plant Science, 42, 61–66. doi:10.1016/0168-9452(85)90029-9.

    Article  CAS  Google Scholar 

  • Powell, M. J., Davis, M. S., & Francis, D. (1986). The influence of zinc on the cell cycle in the root meristem of a zinc-tolerant and non tolerant cultivar of Frestuca rubra L. New Phytologist, 102, 419–428. doi:10.1111/j.1469-8137.1986.tb00819.x.

    Article  CAS  Google Scholar 

  • Rama, D. S., & Prasad, M. N. V. (1998). Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidant. Plant Science, 138(2), 157–165. doi:10.1016/S0168-9452(98)00161-7.

    Article  Google Scholar 

  • Ren, A., Gao, Y. B., & Liu, S. (2000). Effects of Cr, Cd and Pb on free proline content etc in leaves of Brassica chinensis L. Chinese Journal of Applied and Environmental Biology, 6(2), 112–116.

    CAS  Google Scholar 

  • Salardini, A. A., Sparrow, L. A., & Holloway, R. J. (1993). Effects of potassium and zinc fertilizers, gypsum and leaching on cadmium in the seed of poppies (Papaver somniferum L.). In N. J. Barrow (Ed.), Plant nutrition from genetic engineering to field practice (pp. 795–798). Dordrecht: Kluwer Academic Publishers. doi:10.1007/978-94-011-1880-4_177.

    Chapter  Google Scholar 

  • Shah, K., Kumar, R. G., Verma, S., et al. (2006). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161, 1135–1144. doi:10.1016/S0168-9452(01)00517-9.

    Article  Google Scholar 

  • Shi, J., Pan, G. X., & Li, L. Q. (2008). Effects of Cd spiking on cell ultrastructure of root and leaf of two rice cultivars. Asian Journal of Ecotoxicology, 3(4), 403–409.

    Google Scholar 

  • Siedlecka, A., & Krupa, Z. (2002). Functions of enzymes in heavy metal treated plants. In M. N. V. Prasad & S. Kazimierz (Eds.), Physiology and biochemistry of metal toxicity and tolerance in plants (pp. 314–317). Netherlands: Kluwer. doi:10.1007/978-94-017-2660-3_12.

    Google Scholar 

  • Siekevitz, P. (1957). Powerhouse of the cell. Scientific American, 197, 131–140.

    Article  Google Scholar 

  • Sinha, S., Basant, A., Malik, A., & Singh, K. P. (2009). Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology, 8, 555–566. doi:10.1007/s10646-009-0313-6.

    Article  Google Scholar 

  • Tewari, A., Singh, R., Singh, N. K., & Rai, U. N. (2008). Amelioration of municipal sludge by Pistia stratiotes L.: role of antioxidant enzymes in detoxification of metals. Bioresource Technol, 99, 8715–8721. doi:10.1016/j.biortech.2008.04.018.

    Article  CAS  Google Scholar 

  • Thomas, P., & Juedes, M. J. (1992). Influence of lead on glutathione status of Atlantic croaker tissues. Aquatic Toxicology, 23, 11–30. doi:10.1016/0166-445X(92)90009-C.

    Article  CAS  Google Scholar 

  • Tie, B. Q., Yuan, M., Tang, M. Z., et al. (2007). Effects of single heavy metal pollution on the growth and physiological and biochemical characteristics of Eulaliopsis binata. Chinese Journal Eco-Agriculture, 15(2), 99–103.

    CAS  Google Scholar 

  • Visoottiviseth, P., Franeeseoni, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118(3), 453–461. doi:10.1016/S0269-7491(01)00293-7.

    Article  CAS  Google Scholar 

  • Visviki, I., & Rachlin, J. W. (1991). The toxic action and interactions of copper and cadmium to the marine alga Dunaliella minuta in both acute the chronic exposure. Arch Environ Contam Toxicol, 2, 271–275. doi:10.1007/BF01055915.

    Article  Google Scholar 

  • Wang HX (2000) Pollution ecology. Beijing: Higher Education Press, 18–19.

  • Wang, H. X., Shi, G. X., Xu, Q. S., et al. (2008). Physiological characteristics and ultrastructure of Salvinia natans leaves under Cr6+ stress. Acta Botanica Boreali-Occidentalia Sinica, 28(11), 2244–2250.

    CAS  Google Scholar 

  • Wang, Y. Y., Ren, Y. F., Zhou, G. Q., et al. (2009). Effect of cadmium stress on seedlings growth and physiological characteristics in different rice cultivars. Chinese Agricultural Science Bulletin, 25(24), 450–454.

    Google Scholar 

  • Wang, F., Ding, S., Zhang, C. H., & Ge, Y. (2010). Non-protein thiols, subcellular and molecular distribution of cadmium in two rice cultivars with different tolerance. Journal of Agro-Environment Science, 29(4), 625–629.

    Google Scholar 

  • Wu, Y. Y., Chen, S., Zhang, Y. Z., et al. (2009). Effect of heavy metal stress on physiological and biochemical characteristics of five evergreen broad-leaved trees. Journal of Nuclear Agricultural Sciences, 23(5), 843–852.

    Google Scholar 

  • Xiao, M. X., Lin, W. X., Chen, D. M., et al. (2006). Effects of Cd on the cell membrane lipid peroxidation and activity of protecting enzymes in seedlings of rice with different tolerance to Cd pollutant. Chinese Journal of Eco-Agriculture, 14(4), 256–258.

    Google Scholar 

  • Xu, Q. S., Shi, G. X., Du, K. H., et al. (2003). Toxic effect of Cd2+ treatment on protective enzyme activity and ultrastructure in leaf cells of Potamogeton crispus. Acta Hydrobiologica sinica, 27(6), 584–588.

    CAS  Google Scholar 

  • Yan, C. G., Hong, Y. T., Fu, S. Z., et al. (1997). Effect of Cd, Pb stress on scavenging system of activated oxygen in leaves of tobacco. Acata Ecologica Sinica, 17(5), 488–492.

    Google Scholar 

  • Yuan, H. Y., Huang, G., Tong, H. Y., & Huang, S. Z. (2013). The change of non-protein thiol content in roots and leaves of Iris lactea var chinensis under Cd stress. Ecology and Environmental Sciences, 22(7), 1214–1219.

    Google Scholar 

  • Zahra, N., & Muhammad, A. (2009). Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology, 166, 1764–1774. doi:10.1016/j.jplph.2009.05.005.

    Article  Google Scholar 

  • Zhang, Y. X. (1997). Toxicity of heavy metals to Hordeum vulgare. Acta Scientiae Circumstantiae, 17(2), 199–205.

    CAS  Google Scholar 

  • Zhang, F. Q., Wang, Y. S., Lou, Z. P., et al. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67, 44–50. doi:10.1016/j.chemosphere.2006.10.007.

    Article  CAS  Google Scholar 

  • Zheng, X., & Huystee, R. B. (1992). Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Science, 81, 47–56. doi:10.1016/0168-9452(92)90023-F.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyu Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Xia, X., Lan, X. et al. Influence of Arsenic Stress on Physiological, Biochemical, and Morphological Characteristics in Seedlings of Two Cultivars of Maize (Zea mays L.). Water Air Soil Pollut 228, 55 (2017). https://doi.org/10.1007/s11270-016-3231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3231-2

Keywords

Navigation