Skip to main content
Log in

Seasonal Variation of Mercury Associated with Different Phytoplankton Size Fractions in Lahontan Reservoir, Nevada

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sampling is conducted during 2006 in Lahontan Reservoir, Nevada to investigate seasonal variation of total mercury (THg) and methylmercury (MeHg) partitioning in different phytoplankton size fractions as a function of point source (fluvial) mercury (Hg) loads, reservoir residence time, and algal growth. Carson River Hg inputs into the reservoir are extremely dynamic with spring loads two orders of magnitude larger than summer loads. Chlorophyll a measurements show two periods of algal growth. A small amount of algal growth occurs March to May. A second more substantial bloom occurs in the late summer, which is dominated by large, filamentous algae. THg concentrations (C b) and partitioning coefficients (K d) in total suspended particulate matter (SPM) are highest when fluvial inputs of Hg-contaminated sediment are large and are not necessarily associated with living biomass. However, MeHg K d in the small size fraction is indirectly related to fluvial loads and more strongly associated with living biomass in the later portion of the summer when algal growth occurs and reservoir residence times are longer. Data suggest size distinction is important to MeHg partitioning in the reservoir. Lumping all sizes into a single SPM sample will bias the analysis toward low MeHg C b and low MeHg K d in late summer when Aphanizomenon flos-aquae dominates the phytoplankton assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bloom, N. S. (1989). Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapor atomic fluorescence detection. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1131–1140.

    Article  CAS  Google Scholar 

  • Bonzongo, J. C., Nemer, B. W., & Lyons, W. B. (2006). Hydrologic controls on water chemistry and mercury biotransformation in a closed river system: The Carson River, Nevada. Applied Geochemistry, 21, 1999–2009.

    Article  CAS  Google Scholar 

  • Byrne, H. E., Borello, A., Bonzongo, J. C., & Mazyck, D. W. (2009). Investigations of photochemical transformations of aqueous mercury: Implications for water effluent treatment technologies. Water Research, 43(17), 4278–4284.

    Article  CAS  Google Scholar 

  • Carroll, R. W. H., Warwick, J. J., Heim, K. J., Bonzongo, J. C., Miller, J. R., & Lyons, W. B. (2000). Simulating mercury transport and fate in the Carson River, Nevada. Ecological Modelling, 125, 255–278.

    Article  CAS  Google Scholar 

  • Carroll, R., Warwick, J. J., James, A., & Miller, J. (2004). Modeling erosion and overbank deposition during extreme flood conditions on the Carson River, Nevada. Journal of Hydrology, 297, 1–21.

    Article  CAS  Google Scholar 

  • Chasar, L. C., Scudder, B. C., Stewart, A. R., Bell, A. H., & Aiken, G. R. (2009). Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environmental Science and Technology, 43(8), 2733–2739.

    Article  CAS  Google Scholar 

  • Chen, C. Y., & Folt, C. L. (2005). High plankton densities reduce mercury biomagnifications. Environmental Science and Technology, 39, 115–121.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., A. E. Greenberg, & A. D. Eaton (Eds.) (1998). Standard methods for the examination of water and wastewater, 20th ed. Washington: American Public Health Association, American Water Works Association, Water Environment Federation.

  • Cohen, M. J., Lamsal, S., Osborne, T. Z., Bonzongo, J. C., Newman, S., & Reddy, K. R. (2009). Soil total mercury concentrations across the Greater Everglades. Soil Science Society of America Journal, 73(2), 675–685.

    Article  CAS  Google Scholar 

  • Cooper, J.J., S. Vigg, R.W. Bryce & R.L. Jacobson. (1983). Limnology of Lahontan Reservoir, Nevada: 1980–1981. Bioresources and Water Resources Centers. Desert Research Institute. DRI Publication 50021

  • DeMott, W. R. (1999). Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green algae. Freshwater Biology, 42, 263–274.

    Article  Google Scholar 

  • DeMott, W. R., Gulati, R. D., & Van Donk, E. (2001). Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography, 46, 2054–2060.

    Article  Google Scholar 

  • Diamond, M., Ganapathy, M., Peterson, S., & Mach, K. (2000). Mercury dynamics in the Lahontan Reservoir, Nevada: application of the QWASI fugacity/aquivalence multispecies model. Water, Air and Soil Pollution, 117, 133–156.

    Article  CAS  Google Scholar 

  • Donkor, A. K., Bonzongo, J. C., Nartey, V. K., & Adotey, D. K. (2005). Heavy metals in sediments of the gold mining impacted Pra River basin, Ghana, West Africa. Soil and Sediment Contamination, 14, 479–503.

    Article  CAS  Google Scholar 

  • Donkor, A. K., Bonzongo, J. C., Nartey, V. K., & Adotey, D. K. (2006). Mercury in different environmental compartments of the Pra River basin, Ghana. Science of the Total Environment, 368, 164–176.

    Article  CAS  Google Scholar 

  • Ecology and Environment, Inc. (1998). Ecological risk assessment Carson River mercury site. Prepared for the U.S. Environmental Protection Agency, ARCS Region 9 and 10. ZS3490_D4700.

  • Gandhi, N., Bhavsar, S. P., Diamond, M. L., & Kuwabara, J. S. (2007). Development of a mercury speciation, fate and biotic uptake (Biotranspec) model: Application to Lahontan Reservoir (Nevada, USA). Environmental Science and Technology, 26(11), 2260–2273.

    CAS  Google Scholar 

  • Ghadouani, A., Pinel-Alloul, B., & Prepas, E. E. (2003). Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwater Biology, 48, 363–381.

    Article  Google Scholar 

  • Hayward, R. S., & Gallup, D. N. (1976). Feeding, filtering and assimilation in Daphnia schoedleri Sars as affected by environmental conditions. Archiv fur Hydrobiologie, 77, 139–163.

    Google Scholar 

  • Hoffman, R. J. & Taylor, R. L. (1998). Mercury and suspended sediment, Carson River basin, Nevada—Loads to and from Lahontan Reservoir in flood year 1997 and deposition in reservoir prior to 1983. United States Geological Survey, FS-001-98.

  • Holm, N. P., Ganf, G. G., & Shapiro, J. (1983). Feeding and assimilation rates for Daphnia pulex fed on Aphanizomenon flos-aquae. Limnology and Oceanography, 28, 677–687.

    Article  Google Scholar 

  • Horvat, M., Liang, L., & Bloom, N. S. (1993). Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Part II. Water. Analytica Chemica Acta, 282, 153–168.

    Article  CAS  Google Scholar 

  • Hosseinipour, E. Z., & Martin, J. L. (1990). RIVMOD: A one-dimensional hydrodynamic sediment transport model: Model theory and user's guide. Athens: U.S. E.P.A.

    Google Scholar 

  • Karimi, R., Chen, C. Y., Pickhardt, P. C., Fisher, N. S., & Folt, C. L. (2007). Stoichiometric controls of mercury dilution by growth. Ecology, 104(18), 7477–7482.

    CAS  Google Scholar 

  • Kidd, K. A., Helsslein, R. H., Fudge, R. J. P., & Hallard, K. A. (1995). The influence of trophic level as measured by δ15N on mercury concentrations in freshwater organisms. Water, Air and Soil Pollution, 80, 1011–1015.

    Article  CAS  Google Scholar 

  • Kirkwood, A. E., Chow-Fraser, P., & Mierle, G. (1999). Seasonal mercury levels in phytoplankton and their relationship with algal biomass in two dystrophic shield lakes. Environmental Toxicology and Chemistry, 18(3), 523–532.

    Article  CAS  Google Scholar 

  • Kuwabara, J.S., Marvin-Dipasquale, M., Praskings, W., Topping, R.R., Carter, J.L., Fend, S.V., Parchaso, R., Krabbenhoft, D.P., and Gustin, M.N. (2002). Flux of dissolved forms of mercury across the sediment–water interface in Lahontan Reservoir, Nevada. United States Geologic Survey Water-Resources Investigation Report 02-4138. U.S. Department of the Interior.

  • Laurier, F. J. G., Gossa, D., Gonzales, L., Breviere, E., & Sarazin, G. (2003). Mercury transformations and exchanges in a high turbidity estuary: The role of organic matter and amorphous oxyhydroxides. Geochimica Et Cosmochimica Acta, 67, 3329–3345.

    Article  CAS  Google Scholar 

  • Luengen, A. C., & Flegal, A. R. (2009). Role of phytoplankton in mercury cycling in the San Francisco Bay estuary. Limnology and Oceanography, 54(1), 23–40.

    Article  CAS  Google Scholar 

  • Mason, R. P., Reinfelder, J. R., & Morel, F. M. M. (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science and Technology, 30, 1835–45.

    Article  CAS  Google Scholar 

  • Moye, H. A., Miles, C. J., Phlips, E. J., Sargent, B., & Merritt, K. K. (2002). Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environmental Science and Technology, 36(6), 3550–3555.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., & Fisher, N. S. (2007). Accumulation and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environmental Science and Technology, 41, 125–131.

    Article  CAS  Google Scholar 

  • Pickhardt, P. C., Folt, C. L., Chen, C. Y., Klaue, B., & Blum, J. D. (2005). Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Science of the Total Environment, 339, 89–101.

    Article  CAS  Google Scholar 

  • Schāfer, J., Blanc, G., Audry, S., Cossa, D., & Bossy, C. (2006). Mercury in the Lot-Garonne River system (France): Sources, fluxes and anthropogenic component. Applied Geochemistry, 21, 515–527.

    Article  Google Scholar 

  • Stewart, A. R., Saiki, M. K., Kuwabara, J. S., Alpers, C. N., Marvin-DiPasquale, M., & Krabbenhoft, D. P. (2008). Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir. Canadian Journal of Fisheries and Aquatic Science, 65, 2351–2366.

    Article  CAS  Google Scholar 

  • US EPA. (1996). Method 1996: Sampling ambient water for trace metals at EPA water quality criteria levels. Washington: Office of Water Engineering and Analysis Division (4303). 20460.

  • Warner, K. A., Roden, E. E., & Bonzongo, J. C. (2003). Microbial Hg transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environmental Science and Technology, 37(10), 2159–2165.

    Article  CAS  Google Scholar 

  • Warner, K. A., Bonzongo, J. C., Roden, E. E., & Ward, G. M. (2005). Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. Science of the Total Environment, 347, 187–207.

    Article  CAS  Google Scholar 

  • Warwick, J. J., & Heim, K. J. (1995). Hydrodynamic modeling of the Carson River and Lahontan Reservoir, Nevada. Water Resources Bulletin, 31(1), 67–77.

    Google Scholar 

  • Watras, C. J., Back, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in freshwater pelagic food webs. Science of the Total Environment, 219, 183–208.

    Article  CAS  Google Scholar 

  • Welschmeyer, N. A. (1994). Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheaopigments. Limnology and Oceanograrphy, 39, 1985–1992.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project came from the Nevada Institute of Water Resources Research (NIWRR) contract number 06HQGR0098. The USGS contributed federal money while the Desert Research Institute provided matching support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary W. H. Carroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, R.W.H., Memmott, J., Warwick, J.J. et al. Seasonal Variation of Mercury Associated with Different Phytoplankton Size Fractions in Lahontan Reservoir, Nevada. Water Air Soil Pollut 217, 221–232 (2011). https://doi.org/10.1007/s11270-010-0581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0581-z

Keywords

Navigation