Skip to main content
Log in

The Combined Toxic and Genotoxic Effects of Chromium and Volatile Organic Contaminants to Pseudokirchneriella subcapitata

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this report, the toxic effect of TCE (trichloroethylene), PCE (tetrachloroethylene), and potassium dichromate on P. subcapitata was investigated. The test was conducted at different concentrations of pollutants, starting from the European Community limit values defined for each analysed contaminant. Mixtures of pollutants were also tested to verify the combined effect of algae cells. Results suggest that both TCE and PCE were able to reduce P. subcapitata growth and metabolism starting from 0.05 and 0.02 mg L−1 of contaminant, respectively. PCE seems to be substantially more toxic than TCE. Chromium produces a clear effect on algae growth and esterase activity only starting from 1 mg L−1 of potassium dichromate; this result confirms the suitability of EU limit value. AFLP analysis showed that all tested pollutants produce DNA mutations probably due to oxygen radicals. Generally, chromium, at high concentrations, is more toxic and genotoxic that TCE or PCE. Test performed with a mixture of pollutants showed a synergic effect of chromium and organic compounds suggesting that the membrane damage induced from organic substances should increase the chromium cellular access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altenburger, R., Backhaus, T., Boedeker, W., Faust, M., Scholze, M., & Grimme, L. H. (2000). Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similar acting chemicals. Environmental Toxicology and Chemistry, 19(9), 2341–2347.

    CAS  Google Scholar 

  • Barata, C., Baird, D. J., Nogueira, A. J. A., Soares, A. M. V. M., & Riva, M. C. (2006). Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquatic Toxicolology, 78(1), 1–14.

    Article  CAS  Google Scholar 

  • Burton, D. T., Di Lorenzo, J. L., Shedd, T. R., & Wrobel, J. G. (2002). Aquatic hazard assessment of a contaminated surficial aquifer discharge into the bush river, Maryland (U.S.A.). Water, Air, and Soil Pollution, 139(1–4), 159–182.

    Article  CAS  Google Scholar 

  • Channel, S. R., Latendresse, J. R., Kidney, J. K., Grabau, J. H., Lane, J. W., Steel-Goodwin, L., et al. (1998). A subchronic exposure to trichloroethylene causes lipid peroxidation and heptocellular proliferation in male B6C3F1 mouse liver. Toxicological Sciences, 43(2), 145–154.

    Article  CAS  Google Scholar 

  • Cho, C., Corapcioglu, M. Y., Park, S., & Sung, K. (2008). Effects of grasses on the fate of VOCs in contaminated soil and air. Water, Air and Soil Pollution, 187(1–4), 243–250.

    CAS  Google Scholar 

  • Council Directive 1998/83/EC. (1998). On the quality of water intended for human consumption. Official Journal of the European Communities L, 330, 32–54.

    Google Scholar 

  • Dekant, W., Koob, M., & Henschler, D. (1990). Metabolism of trichloroethene: in vivo and in vitro evidence for activation by glutathione conjugation. Chemico-Biological Interactions, 73(1), 89–101.

    Article  CAS  Google Scholar 

  • Dreeßen, B., Westphal, G., Bünger, J., Hallier, E., & Müller, M. (2003). Mutagenicity of the glutathione and cysteine S-conjugates of the haloalkenes 1,1,2-trichloro-3,3,3-trifluoro-1-propene and trichlorofluoroethene in the Ames test in comparison with the tetrachloroethene-analogues. Mutation Research, 539(1-2), 157–166.

    Google Scholar 

  • Gennings, C., Schwartz, P., Carter, J., & Simmons, J. E. (1997). Detection of departure from additivity in mixture of many chemicals with a threshold model. Journal of Agricultural, Biological, and Environmental Statistics, 2(2), 198–211.

    Article  Google Scholar 

  • Halmes, N. C., McMillan, D. C., Oatis, J. E., & Pumford, N. R. (1996). Immunochemical detection of protein adducts in mice treated with trichloroethylene. Chemical Research in Toxicology, 9(2), 451–456.

    Article  CAS  Google Scholar 

  • Hsieh, S. H., Tsai, K. P., & Chen, C. Y. (2006). The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Water Research, 40(19), 1957–1964.

    Article  CAS  Google Scholar 

  • Hu, C., Jiang, L., Geng, C., Zhang, X., Cao, J., & Zhong, L. (2008). Possible involvement of oxidative stress in trichloroethylene-induced genotoxicity in human HepG2 cells. Mutation Research, 652(1), 88–94.

    CAS  Google Scholar 

  • Kontas, A. (2008). Trace metals (Cu, Mn, Ni, Zn, Fe) Contamination in marine sediment and Zooplankton samples from Izmir Bay. (Aegean Sea, Turkey). Water, Air, and Soil Pollution, 188(1–4), 323–333.

    Article  CAS  Google Scholar 

  • Labra, M., Grassi, F., Imatio, S., Di Fabio, T., Citterio, S., Sgorbati, S., et al. (2004). Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere, 54(8), 1049–1058.

    Article  CAS  Google Scholar 

  • Labra, M., Bernasconi, M., Grassi, F., De Mattia, F., Sgorbati, S., Airoldi, R., et al. (2007). Toxic and genotoxic effect of potassium dichromate in Pseudokirchneriella subcapitata detected by microscopi and AFLP analysis. Aquatuatic Botany, 86(3), 229–235.

    Article  CAS  Google Scholar 

  • Lash, L. H., Qian, W., Putt, D. A., Desai, K., Elfarra, A. A., Sicuri, A. R., et al. (1998). Glutathione conjugation of perchloroethylene in rats and mice in vitro: sex-, species-, and tissue-dependent differences. Toxicology and Applied Pharmacology, 150(11), 49–57.

    Article  CAS  Google Scholar 

  • Lash, L. H., Qian, W., Putt, D. A., Jacobs, K., Elfarra, A. A., Krause, R. I., et al. (1998). Glutathione conjugation of trichloroethylene in rats and mice: sex-, species-, and tissue-dependent differences. Drug Metabolism and Disposition, 26(1), 12–19.

    CAS  Google Scholar 

  • Marques, C. R., Abrantes, N., Figueiredo, D. R., Pereira, M. J., & Goncalves, F. (2008). Are Pseudokirchneriella subcapitata and Chlorella vulgaris affected by environmental samples from a rice field? Water, Air, and Soil Pollution, 189(1–4), 49–59.

    Article  CAS  Google Scholar 

  • Mayer, P., Kuhel, R., & Nyholm, N. (1997). A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Research, 31(10), 2525–2531.

    Article  CAS  Google Scholar 

  • Miller, R. E., & Guengerich, F. P. (1982). Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry, 21(5), 1090–1097.

    Article  CAS  Google Scholar 

  • Nichols, H. W. (1979). Growth media-freshwater. In J. R. Stein (Ed.), Handbook of phycological method, culture methods and growth measurement (pp. 7–24). Cambridge: Cambridge University Press.

    Google Scholar 

  • Paine, A. J. (2001). Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Human & Experimental Toxicology, 20(9), 439–451.

    Article  Google Scholar 

  • Sausen, P. J., & Elfarra, A. A. (1991). Reactivity of cysteine S-conjugate sulfoxides: formation of S-[1-chloro-2-(S-glutathionyl)vinyl]-l-cysteine sulfoxide by the reaction of S-(1, 2-dichlorovinyl)-l-cysteine sulfoxide with glutathione. Chemical Research in Toxicology, 4(6), 655–660.

    Article  CAS  Google Scholar 

  • Seiji, K., Jin, C., Watanabe, T., Nakatsuka, H., & Ikeda, M. (1990). Sister chromatid exchanges in peripheral lymphocytes of workers exposed to benzene, trichloroethylene, or tetrachloroethylene, with reference to smoking habits. International Archives of Occupational and Environmental Health, 62(2), 171–176.

    Article  CAS  Google Scholar 

  • Sharma, D. C., Sharma, C. P., & Tripathi, R. D. (2003). Phytotoxic lesions of chromium in maize. Chemosphere, 51(1), 63–68.

    Article  CAS  Google Scholar 

  • Shehata, S. A., Lasheen, M. R., Kobbia, I. A., & Ali, G. H. (1999). Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water, Air, and Soil Pollution, 110(1–2), 119–135.

    Article  CAS  Google Scholar 

  • Speranza, A., Ferri, P., Battistelli, M., Falcieri, E., Crinelli, R., & Scoccianti, V. (2007). Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen. Chemosphere, 66(7), 1165–1174.

    Article  CAS  Google Scholar 

  • Suk, W., & Olden, K. (2005). Multidisciplinary research: strategies for assessing chemical mixtures to reduce risk of exposure and disease. Human and Ecological Risk Assessment, 11(1), 141–151.

    Article  CAS  Google Scholar 

  • Toraason, M., Clark, J., Dankovic, D., Mathias, P., Skaggs, S., Walker, C., et al. (1999). Oxidative stress and DNA damage in Fischer rats following acute exposure to trichloroethylene or perchloroethylene. Toxicology, 138(11), 43–53.

    Article  CAS  Google Scholar 

  • Valitutto, R. S., Sella, S. M., Silva-Filho, E. V., Pereira, R. G., & Miekeley, N. (2007). Accumulation of metals in macrophytes from water reservoirs of a power supply plant, Rio de Janeiro State, Brazil. Water, Air, and Soil Pollution, 178(1–4), 89–102.

    Article  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407–4414.

    Article  CAS  Google Scholar 

  • Walles, S. A. S. (1986). Induction of single-strand breaks in DNA of mice by trichloroethylene and tetbachloroethylene. Toxicology Letters, 31(1), 31–35.

    Article  CAS  Google Scholar 

  • Wang, J. L., Chen, W. L., Tsai, S. Y., Sung, P. Y., & Huang, R. N. (2001). An in vitro model for evaluation of vaporous toxicity of trichloroethylene and tetrachloroethylene to CHO-K1 cells. Chemico-Biological Interactions, 137(2), 139–154.

    Article  CAS  Google Scholar 

  • Wise, S. S., Holmes, A. L., & Wise, J. P., Sr. (2008). Hexavalent chromium-induced DNA damage and repair mechanisms. Reviews on Environmental Health, 23(1), 39–57.

    CAS  Google Scholar 

  • World Health Organization (WHO). (2006). Tetrachloroethylene in: Concise International Chemical Assessment Document 68, International Programme on Chemical Safety (IPCS). Geneva: Monograph, WHO.

    Google Scholar 

  • Wu, K. L., & Berger, T. (2007). Trichloroethylene metabolism in the rat ovary reduces oocyte fertilizability. Chemico-Biological Interactions, 170(1), 20–30.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Project: “Riutilizzo agricolo delle acque: studio degli effetti di xenobiotici ambientali di origine farmaceutica sulla produttività agricola” of Fondazione Idra, Italy; “Acqua in Brocca” of Fondazione Cariplo, Italy and “Studio degli xenobiotici organici nelle acque” of Servizio Idrico Integrato di Milano, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Labra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labra, M., De Mattia, F., Bernasconi, M. et al. The Combined Toxic and Genotoxic Effects of Chromium and Volatile Organic Contaminants to Pseudokirchneriella subcapitata . Water Air Soil Pollut 213, 57–70 (2010). https://doi.org/10.1007/s11270-010-0367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0367-3

Keywords

Navigation