Skip to main content

Advertisement

Log in

Hot NTA Application Enhanced Metal Phytoextraction from Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

To increase the phytoextraction efficiency of heavy metals and to reduce the potential negative effects of mobilized metals on the surrounding environment are the two major objectives in a chemically enhanced phytoextraction process. In the present study, a biodegradable chelating agent, NTA, was added in a hot solution at 90°C to soil in which beans (Phaseolus vulgaris L., white bean) were growing. The concentrations of Cu, Zn and Cd, and the total phytoextraction of metals by the shoots of the plant from a 1 mmol kg−1 hot NTA application exceeded those in the shoots of plants treated with 5 mmol kg−1 normal NTA and EDTA solutions (without heating treatment). A significant correlation was found between the concentrations of metals in the shoots of beans and the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the application of a hot solution might play an important role in the process of chelate-enhanced metal uptake in plants. The application of hot NTA solutions did not significantly increase metal solubilization in soil in comparison with a normal application of solution of the same dosage. Therefore, the application of a hot NTA solution may provide a more efficient alternative in chemical-enhanced phytoextraction, although further studies of techniques of application in fields are sill required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avery, B. W., & Bascomb, C. L. (1982). Soil survey laboratory methods. Harpenden, soil survey technical monograph No. 6. Rothamsted Experimental Station, Harpenden, Hertfordshire, U.K.

  • Bell, P. F., Chaney, R. L., & Angle, J. S. (1991). Free metal activity and total metal concentrations as indexes of micronutrient availability to barley [Hordeum vulgare (L.) ‘Klages’]’. Plant Soil, 130, 51–62.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., & Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.

    Article  Google Scholar 

  • Bucheli-Witschel, M., & Egli, T. (2001). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews, 25, 69–106.

    Article  CAS  Google Scholar 

  • Chen, Y. H., Li, X. D., & Shen, Z. G. (2004a). Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 57, 187–196.

    Article  CAS  Google Scholar 

  • Chen, Y. H., Shen, Z. G., & Li, X. D. (2004b). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19, 1553–1565.

    Article  CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2005). Enhanced uptake of As, Zn and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere, 60, 1365–1375.

    Article  CAS  Google Scholar 

  • Cooper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., & Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality, 28, 1709–1719.

    CAS  Google Scholar 

  • Ensley, B. D., Blaylock, M. J., Dushenkov, S., Kumar, N. P. B. A., & Kapulnik, Y. (1999). Inducing hyperaccumulation of metals in plant shoots, S. U. Patent 5 917 117. Date issued: 29 June 1999.

  • Epstein, A. L., Gussman, C. D., Blaylock, M. J., Yermiyahu, U., Huang, J. W., & Kapulnik, Y., et al. (1999). EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil, 208, 87–94.

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  • Grčman, H., Velikonja-Bolta, Š., Vodnik, D., Kos, B., & Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction: Metal accumulation, leaching and toxicity. Plant Soil, 235, 105–114.

    Article  Google Scholar 

  • Grčman, H., Vodnik, D., Velikonja-Bolta, Š., & Leštan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality, 32, 500–506.

    Google Scholar 

  • Hewitt, E. J. (1966). Sand and water culture methods used in the study of plant nutrition (2nd ed), Technical Communication No. 22, Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, U.K

  • Huang, J. W., Chen, J. J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of lead- contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 31, 800–805.

    Article  CAS  Google Scholar 

  • Kayser, A., Schulin, R., & Felix, H. (1999). Field trials for the phytoremediation of soils polluted with heavy metals. In Umweltbundesamt (Ed.), Proc. Int. Workshop am Fraunhofer Institut für Umweltchemic und Ökotoxikologie, Schmallenberg (pp. 170–182). Berlin, Germany: Erich Schmidt Verlag. Berlin, 1–2 Dec. 1997.

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., & Gupta, S. K., et al. (2000). ‘Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science & Technology, 34, 1778–1783.

    Article  CAS  Google Scholar 

  • Kulli, B., Balmer, M., Krebs, R., Lothenbach, B., & Geiger, G., et al. (1999). The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. Journal of Environmental Quality, 28, 1699–1705.

    CAS  Google Scholar 

  • Li, X. D., Poon, C. S., & Liu, P. S. (2001). Concentration and chemical partitioning of road dusts and urban soils in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Li, H. F., Wang, Q. R., Cui, Y. S., Dong, Y. T., & Christie, P. (2005). Slow release chelate enhancement of lead phytoextractio by corn (Zea mays L.) from contaminated soil – A preliminary study. Science of the Total Environment, 339, 179–187.

    Article  CAS  Google Scholar 

  • Lim, J.-M., Salido, A. L., & Butcher, D. J. (2004). Phytoextraction of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchemical Journal, 76, 3–9.

    Article  CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., Baker, A. J. M., & Li, X. D. (2006b). The role of root damage in the chelate-enhanced accumulation of lead by Indian mustard plants. International Journal of Phytoremediation, 8, 323–337.

    Article  CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., & Li, X. D. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.

    Article  CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., & Li, X. D. (2007). Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process. International Journal of Phytoremediation, 9, 181–196.

    Article  CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., Li, X. D., & Baker, A. J. M. (2006c). Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63, 1773–1784.

    Article  CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., Lou, L. Q., & Li, X. D. (2006a). EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environmental Pollution, 144, 862–871.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford Univ. Press.

    Google Scholar 

  • Meers, E., Hopgood, M., Lesage, E., Vervaeke, P., Tack, F. M. G., & Verloo, M. G. (2004). Enhanced phytoextraction: In search of EDTA alternatives. International Journal of Phytoremediation, 6, 95–109.

    Article  CAS  Google Scholar 

  • Meers, E., Ruttens, A., Hopgood, M. J., Samson, D., & Tack, F. M. G. (2005). Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58, 1011–1022.

    Article  CAS  Google Scholar 

  • Puschenreiter, M., Stoger, G., Lombi, E., Horak, O., & Wenzel, W. W. (2001). Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. Journal of Plant Nutrition and Soil Science, 164, 615–621.

    Article  CAS  Google Scholar 

  • Quartacci, M. F., Baker, A. J. M., & Navari-Izzo, F. (2005). Nitrilotriacetate- and citric acid-assisted phytoremediation of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere, 59, 1249–1255.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S. R., & Clothier, B. E. (2000). ‘Natural and induced cadmium-accumulation in polar and willow: Implications for phytoremediation. Plant Soil, 227, 301–306.

    Article  CAS  Google Scholar 

  • Römheld, V., & Marschner, H. (1981). Effect of Fe stress on utilization of Fe chelates by efficient and inefficient plant-species. Journal of Plant Nutrition, 3, 551–556.

    Article  Google Scholar 

  • Sarret, G., Vangronsveld, J., Manceau, A., Musso, M., D’Haen, J., & Menthonnex, J.-J., et al. (2001). Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environmental Science & Technology, 35, 2854–2859.

    Article  CAS  Google Scholar 

  • Shen, Z. G., Li, X. D., Wang, C. C., Chen, H. M., & Chua, H. (2002). Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environmental Quality, 31, 1893–1900.

    CAS  Google Scholar 

  • Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., & Schulin, R., et al. (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science & Technology, 38, 937–944.

    Article  CAS  Google Scholar 

  • Tiedje, J. M., & Mason, B. B. (1974). Biodegradation of nitrilotriacetate (NTA) in soils. Soil Science Society of America Proceedings, 38, 278–283.

    Article  CAS  Google Scholar 

  • Vassil, A. D., Kapulnik, Y., Raskin, I., & Salt, D. E. (1998). The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology, 117, 447–453.

    Article  CAS  Google Scholar 

  • Wenger, K., Gupta, S. K., Furrer, G., & Schulin, R. (2003). The role of nitrilotriacetate in copper uptake by tobacco. Journal of Environmental Quality, 32, 1669–1676.

    Article  CAS  Google Scholar 

  • Wenger, K., Kayser, A., Gupta, S. K., Furrer, G., & Schulin, R. (2002). Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil & Sediment Contamination, 11, 655–672.

    Article  CAS  Google Scholar 

  • Wu, J., Hsu, F. C., & Cunningham, S. D. (1999). Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constraints. Environmental Science & Technology, 33, 1898–1904.

    Article  CAS  Google Scholar 

  • Zhou, W. J., & Leul, M. (1998). Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regulation, 26, 41–47.

    Article  CAS  Google Scholar 

  • Zhu, G. R., Zhong, H. W., & Zhang, A. Q. (1990). Plant physiology experiment Peking University Press, Beijing, pp. 242–254.

    Google Scholar 

Download references

Acknowledgments

The project was supported by the Research Grants Council of the Hong Kong SAR Government (PolyU5046/02E) and the Postdoctoral Research Fellowships from the Hong Kong Polytechnic University (G-YX07 and G-YY88).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, CL., Shen, ZG. & Li, XD. Hot NTA Application Enhanced Metal Phytoextraction from Contaminated Soil. Water Air Soil Pollut 188, 127–137 (2008). https://doi.org/10.1007/s11270-007-9529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9529-3

Keywords

Navigation