Skip to main content
Log in

Some like it hot and some like it cold, but not too much: plant responses to climate extremes

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Current climatic models predict increasing frequency and magnitude of extreme climatic events (ECEs). Ecological studies recognize the importance of these extremes as drivers of plant growth and mortality, as well as drivers of ecological and evolutionary processes. Here we review observational and experimental studies on ECEs on herbaceous plants and shrubs. Extreme events considered were heat waves, drought, advanced or delayed snowmelt, heavy rainfalls, frosts, pulsed watering and flooding. We analysed 39 studies dealing with direct response of plant to ECEs in different ecosystems, with a particular focus on cold ecosystems (alpine and arctic). Although the number of studies increases every year, the understanding of ecological consequences of ECEs is fragmentary. In general, ECEs affected negatively on physiological processes (efficiency of photosystem II, stomatal conductance and leaf water potential), productivity and reproduction, and had consequences on population demography and recruitment several years after ECE. Indeed, the plant responses to ECEs were species specific and depended on the plant life stage and the timing of ECE. In fact, the magnitude of the effect of ECEs decreased over the growing season. Drought had the most severe effect on plants, while heat waves had minor effect if water was available. The overlap of different ECEs had an additive effect (e.g. drought associated to heat-waves). In general, both neutral or positive plant responses were found and acclimation is possible. In some cases, ECEs exert a strong selective pressure on plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeli T, Rossi G, Gentili R, Mondoni A, Cristofanelli P (2012) Response of alpine plant flower production to temperature and snow cover fluctuation at the species range boundary. Plant Ecol 213:1–13

    Article  Google Scholar 

  • Abeli T, Jäkäläniemi A, Wannas L, Mutikainen P, Tuomi J (2013) Pollen limitation and fruiting failure related to canopy closure in Calypso bulbosa (Orchidaceae), a northern food-deceptive orchid with a single flower. Bot J Linn Soc 171:744–750

    Article  Google Scholar 

  • Abeli T, Mondoni A, Rossi G, Orsenigo S (2014a) Effect of summer heat-waves on Europe’s wild flora and vegetation. Agrochimica LVIII (in press)

  • Abeli T, Gentili R, Mondoni A, Orsenigo S, Rossi G (2014b) Effects of marginality on plant population performance. J Biogeogr 41:239–249

    Article  Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci USA 95:14839–14842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684

    Article  Google Scholar 

  • Andrello M, Bizoux JP, Barbet-Massin M, Gaudeul M, Nicolè F, Till-Bottraud I (2012) Effects of management regimes and extreme climatic events on plant population viability in Eryngium alpinum. Biol Conserv 147:99–106

    Article  Google Scholar 

  • Bauweraerts I, Ameye M, Wertin TM, Mcguire MA, Teskey RO, Steppe K (2014) Acclimation effects of heat waves and elevated CO2 on gas exchange and chlorophyll fluorescence of northern red oak (Quercus rubra L.) seedlings. Plant Ecol. doi 10.1007/s11258-014-0352-9

  • Beierkuhnlein C, Jentsch A, Thiel D, Willner E, Kreyling J (2011) Ecotypes of European grass species respond differently to warming and extreme drought. J Ecol 99:703–713

    Article  Google Scholar 

  • Benot ML, Saccone P, Vicente R, Pautrat E, Morvan-Bertrand A, Decau ML, Grigulis K, Prud’homme MP, Lavorel S (2013) How extreme summer weather may limit control of Festuca paniculata by mowing in subalpine grasslands. Plant Ecol Divers 6:393–404

    Article  Google Scholar 

  • Bjerke JW, Bokhorst S, Zielke M, Callaghan TV, Bowles FW, Phoenix GK (2011) Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J Ecol 99:1481–1488

    Article  Google Scholar 

  • Bjerke JW, Bokhorst S, Callaghan TV, Zielke M, Phoenix GK (2013) Rapid photosynthetic recovery of a snow-covered feather moss and Peltigera lichen during sub-Arctic midwinter warming. Plant Ecol Divers 6:383–392

    Article  Google Scholar 

  • Bokhorst S, Bjerke JW, Bowles FW, Melillo J, Callaghan TV, Phoenix GK (2008) Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf-shrub heath land. Glob Change Biol 14:2603–2612

    Google Scholar 

  • Bokhorst S, Bjerke JW, Daveya MP, Taulavuori K, Taulavuori E, Laine K, Callaghan TV, Phoenix GK (2010) Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol Plantarum 140:128–140

    Article  CAS  Google Scholar 

  • Bokhorst S, Bjerke JW, Street LE, Callaghan TV, Phoenix GK (2011) Impacts of multiple extreme winter warming events on sub-arctic heathland: phenology, reproduction, growth and CO2 flux responses. Glob Change Biol 17:2817–2830

    Article  Google Scholar 

  • Bokhorst S, Bjerke JW, Tømmervik H, Preece C, Phoenix GK (2012) Ecosystem Response to Climatic Change: the Importance of the Cold Season. Ambio 41:246–255

    Article  PubMed Central  PubMed  Google Scholar 

  • Bragazza L (2008) A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob Change Biol 14:2688–2695

    Google Scholar 

  • Brancaleoni L, Gerdol R (2014) Habitat-dependent interactive effects of a heat wave and experimental fertilization on the vegetation of an alpine mire. J Veg Sci 25:427–438

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock MT, Galen C (2005) Drought tolerance in the alpine dandelion, Taraxacum ceratophorum (Asteraceae), its exotic congener T. officinale, and interspecific hybrids under natural and experimental conditions. Am J Bot 92:1311–1321

    Article  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Science 437:529–533

    CAS  Google Scholar 

  • Cooper EJ, Dullinger S, Semenchuk P (2011) Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci 180:157–167

    Article  CAS  PubMed  Google Scholar 

  • Cornelius C, Leingärtner A, Hoiss B, Krauss J, Steffan-Dewenter I, Menzel A (2013) Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient. J Exp Bot 64:241–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012) Timing of climate variability and grassland productivity. Proc Natl Acad of Sci 109:3401–3405

    Article  CAS  Google Scholar 

  • De Boeck HJ, Dreesen FE, Janssens IA, Nijs I (2011) Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol 189:806–817

    Article  PubMed  Google Scholar 

  • Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB, Blumenthal DM, Bradley BA, Early R, Ibáñez I, Jones SJ, Lawler JJ, Miller LP (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10(5):249–257

    Article  Google Scholar 

  • Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17:990–996

    Article  Google Scholar 

  • Dreseen FE, De Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD et al (2012) Tundra vegetation change and recent climate warming: is there evidence at the plot scale? Nature Clim Change 2:453–457

    Google Scholar 

  • Engler R, Randin CF, Thuiller W et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341

    Article  Google Scholar 

  • Ertl S (2013) Positive effects of an extremely hot summer on propagule rain in upper alpine to subnival habitats of the Central Eastern Alps. Plant Ecol Divers 6:467–474

    Article  Google Scholar 

  • Gehrig R (2006) The influence of the hot and dry summer 2003 on the pollen season in Switzerland. Aerobiologia 22:27–34

    Article  Google Scholar 

  • Gerdol R, Vicentini R (2011) Response to heat stress of populations of two Sphagnum species from alpine bogs at different altitudes. Environ Exp Bot 74:22–30

    Article  CAS  Google Scholar 

  • Gerdol R, Bragazza L, Brancaleoni L (2008) Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and carbon dioxide exchange in an alpine bog. New Phytol 179:142–154

    Article  CAS  PubMed  Google Scholar 

  • Gerdol R, Siffi C, Iacumin P, Gualmini M, Tomaselli M (2013) Advanced snowmelt affects vegetative growth and sexual reproduction of Vaccinium myrtillus in a sub-alpine heath. J Veg Sci 24:569–579

    Article  Google Scholar 

  • Godfree R, Lepschi B, Reside A, Bolger T, Robertson B, Marshall D, Carnegie M (2011) Multiscale topoedaphic heterogeneity increases resilience and resistance of a dominant grassland species to extreme drought and climate change. Glob Change Biol 17:943–958

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115

    Google Scholar 

  • Graae BJ, Ejrnaes R, Marchand FL, Milbau A, Shevtsova A, Beyens L, Nijs I (2009) The effect of an early-season short-term heat pulse on plant recruitment in the Arctic. Polar Biol 32:1117–1126

    Article  Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160:21–42

    Article  Google Scholar 

  • Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000) Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the mojave desert evergreen shrub, Larrea tridentata. Plant Ecol 148:183–193

    Article  Google Scholar 

  • Heijmans MMPD, van der Knaap YAM, Holmgren M, Limpens J (2013) Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Glob Change Biol 19:2240–2250

    Article  Google Scholar 

  • Hoover DL, Knapp AK, Smith MD (2014) Contrasting sensitivities of two dominant C4 grasses to heat waves and drought. Plant Ecol. doi 10.1007/s11258-014-0345-8

  • Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. In: Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. C R Geosci 340:621–628

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Elmer M et al (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702

    Article  Google Scholar 

  • Jiménez MA, Jaksic FM, Armesto JJ, Gaxiola A, Meserve PL, Kelt DA, Gutierrez JR (2011) Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecol Lett 14:1227–1235

    Article  PubMed  Google Scholar 

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409. doi:10.1029/2005GL023252

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Kreyling J, Jentsch A, Beierkuhnlein C (2011) Stochastic trajectories of succession initiated by extreme climatic events. Ecol Lett 14:758–764

    Article  CAS  PubMed  Google Scholar 

  • Kreyling J, Thiel D, Simmnacher K, Willner E, Jentsch A, Beierkuhnlein C (2012) Geographic origin and past climatic experience influence the response to late spring frost in four common grass species in central Europe. Ecography 35:268–275

    Article  Google Scholar 

  • Larcher W, Kainmuller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Article  Google Scholar 

  • Lloret F, Escudero A, Iriondo JM, Martinez-Vilalta J, Valladares F (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Change Biol 18:797–805

    Article  Google Scholar 

  • Marcante S, Sierra-Almeida A, Spindelböck JP, Erschbamer B, Neuner G (2012) Frost as a limiting factor for recruitment and establishment of early development stages in an alpine glacier foreland? J Veg Sci 23:858–868

    Article  Google Scholar 

  • Marcante S, Erschbamer B, Buchner O, Neuner G (2014) Impact of heat on early developmental stages of glacier foreland species. Plant Ecol. doi:10.1007/s11258-014-0350-y

  • Marchand FL, Mertens S, Kockelbergh F, Beyens L, Nijs I (2005) Performance of High Arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob Change Biol 11:2078–2089

    Article  Google Scholar 

  • Marchand FL, Verlinden M, Kockelbergh F, Graae BJ, Beyens L, Nijs I (2006a) Disentangling effects of an experimentally imposed extreme temperature event and naturally associated desiccation on Arctic tundra. Funct Ecol 20:917–928

    Article  Google Scholar 

  • Marchand FL, Kockelbergh F, van de Vijver B, Beyens L, Nijs I (2006b) Are heat and cold resistance of arctic species affected by successive extreme temperature events? New Phytol 170:291–300

    Article  CAS  PubMed  Google Scholar 

  • Marrero-Gómez MV, Oostermeijer JGB, Carqué-Álamo E, Bañares-Baudet Á (2007) Population viability of the narrow endemic Helianthemum juliae (Cistaceae) in relation to climate variability. Biol Conserv 136:552–562

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Milbau A, Scheerlincka L, Reheulb D, De Cauwerb B, Nijs I (2005) Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event. Physiol Plantarum 125:500–512

    Article  CAS  Google Scholar 

  • Milbau A, Graae BJ, Shevtsova A, Nijs I (2009) Effects of a warmer climate on seed germination in the subarctic. Ann Bot-Lond 104:287–296

    Article  Google Scholar 

  • Miranda JD, Jorquera MJ, Pugnaire FI (2014) Phenological and reproductive responses of a semiarid shrub to pulsed watering. Plant Ecol. doi:10.1007/s11258-014-0354-7

  • Mondoni A, Rossi G, Orsenigo S, Probert RJ (2012) Climate warming could shift the timing of seed germination in alpine plants. Ann Bot-Lond 110:155–164

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Luo Y, Li D, Cao S, Xia J, Li J, Smith MD (2014) Plant growth and mortality under climatic extremes: an overview. Environ Exp Bot 98:13–19

    Article  Google Scholar 

  • Ooi MKJ, Auld TD, Denham AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant Soil 353:289–303

    Article  CAS  Google Scholar 

  • Orlowsky B, Seneviratne S (2012) Global changes in extreme events: regional and seasonal dimension. Clim Chang 110:669–696

    Article  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trends in the Alps. Basic Appl Ecol 9:100–107

    Article  Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Article  CAS  PubMed  Google Scholar 

  • Pautasso M, Dehnen-Schmutz K, Holdenrieder O, Pietravalle S, Salama N, Jeger MJ, Lange E, Hehl-Lange S (2010) Plant health and global change—some implications for landscape management. Biol Rev 85:729–755

    PubMed  Google Scholar 

  • Petraglia A, Carbognani M, Petit Bon M, Delnevo N, Chiari G, Tomaselli M (2014) Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecol (in press)

  • Pettorelli N, Pelletier F, von Hardenberg A, Festa-Bianchet M, Côté SD (2007) Early onset of vegetation growth versus rapid green-up: impacts on juvenile mountain ungulates. Ecology 88:381–390

    Article  PubMed  Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Springer, Berlin and Heidelberg

    Google Scholar 

  • Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    Article  CAS  PubMed  Google Scholar 

  • Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genetic diversity. Proc Natl Acad Sci USA 102:2826–2831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, De Lorenzi F, Dury M, Gloning P, Abou Jaoude R, Klein T, Kuster TM, Martins M, Niedrist G, Riccardi M, Wohlfahrt G, De Angelis P, De Dato G, Francois L, Menzel A, Pereira M (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Change Biol 19:75–89

    Article  Google Scholar 

  • Schauber EM, Turchin P, Simon C, Kelly D, Lee WG, Allen RB, Payton IJ, Wilson PR, Cowan PE, Brockie RE (2002) Masting by eighteen New Zealand plant species: the role of temperature as a synchronising cue. Ecology 83:1214–1225

    Article  Google Scholar 

  • Sheppard CS, Alexander JM, Billeter R (2012) The invasion of plant communities following extreme weather events under ambient and elevated temperature. Plant Ecol 213:1289–1301

    Article  Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA III, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci USA 104:198–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Signarbieux C, Feller U (2012) Effects of an extended drought period on physiological properties of grassland species in the field. J Plant Res 125:251–261

    Article  PubMed  Google Scholar 

  • Smith M (2011) An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 99:656–663

    Article  Google Scholar 

  • Stampfli A, Zeiter M (2004) Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in southern Switzerland. J Ecol 92:568–576

    Article  Google Scholar 

  • Taulavuori E, Tahkokorpi M, Laine K, Taulavuori K (2010) Drought tolerance of juvenile and mature leaves of a deciduous dwarf shrub Vaccinium myrtillus L. in a boreal environment. Protoplasma 241:19–27

    Article  PubMed  Google Scholar 

  • Thompson JD, Gauthier P, Amiot J, Ehlers BK, Collin C, Fossat J, Barrios V, Arnaud-Miramont F, Keefover-Ring K, Linhart YB (2007) Ongoing adaptation to mediterranean climate extremes in a chemically polymorphic plant. Ecol Monogr 77:421–439

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Skyes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Twardosz R, Kossowska-Cezak U (2013) Exceptionally hot summers in Central and Eastern Europe (1951–2010). Theor Appl Climatol 112:617–628

    Article  Google Scholar 

  • Van Peer L, Nijs I, Bogaert J, Verelest I, Reheuel D (2001) Survival, gap formation, and recovery dynamics in grassland ecosystems exposed to heat extremes: the role of species richness. Ecosystems 4:797–806

    Article  Google Scholar 

  • Van Peer L, Nijs I, Reheul D, De Cauwer B (2004) Species richness and susceptibility to heat and drought extremes in synthesized grassland ecosystems: compositional versus physiological effects. Funct Ecol 18:769–778

    Article  Google Scholar 

  • Vandentorren S, Suzan F, Medina S, Pascal M, Maulpoix A, Cohen JC, Ledrans M (2004) Mortality in 13 French cities during the August 2003 heat wave. Am J Public Health 94:1518–1520

    Article  PubMed Central  PubMed  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Change Biol 17:2145–2161

    Article  Google Scholar 

  • Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A (2011) Do plants remember drought? Hints towards a drought-memory in grasses. Environ Exp Bot 71:34–40

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Heckathorn SA, Mainali K, Hamilton EW (2008) Effects of N on plant response to heat-wave: a field study with prairie vegetation. J Integr Plant Biol 50:1416–1425

    Article  CAS  PubMed  Google Scholar 

  • White TA, Campbell BD, Kemp PD, Hunt C (2000) Sensitivity of three grassland communities to simulated extreme temperature and rainfall events. Global Change Biol 6:671–684

    Article  Google Scholar 

  • Wipf S, Rixen C (2010) A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29:95–109

    Article  Google Scholar 

  • Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Change 94:105–121

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of SHARE project (Ev-K2-CNR, Bergamo) and of the Italian Project of National Interest NextData, supported by the Ministry of Education, University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Orsenigo.

Additional information

Communicated by Thomas Abeli, Anne Jäkäläniemi and Rodolfo Gentili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Studies considered for the quantitative data used in the manuscript, divided for topics. For each studies we listed all the species considered, their functional types, the type of event studied and the effects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsenigo, S., Mondoni, A., Rossi, G. et al. Some like it hot and some like it cold, but not too much: plant responses to climate extremes. Plant Ecol 215, 677–688 (2014). https://doi.org/10.1007/s11258-014-0363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0363-6

Keywords

Navigation