Skip to main content
Log in

Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of S. frugiperda was discovered in Puerto Rico that had evolved resistance to Cry1F maize in the field, making it the first well-documented case of an insect with field resistance to a plant producing protein from Bacillus thuringiensis (Bt). Using this resistant population, we conducted tri-trophic studies with a natural enemy of S. frugiperda. By using resistant S. frugiperda, we were able to overcome possible prey-mediated effects and avoid concerns about potential differences in laboratory- or field-derived Bt resistance. We used the Cry1F-resistant S. frugiperda to evaluate effects of Cry1F on Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of S. frugiperda, over five generations. Our results clearly demonstrate that Cry1F maize does not affect development, parasitism, survivorship, sex ratio, longevity or fecundity of C. marginiventris when they parasitize Cry1F maize-fed S. frugiperda. Furthermore, the level of Cry1F protein in the leaves was strongly diluted when transferred from Bt maize to S. frugiperda and was not detected in larvae, cocoons or adults of C. marginiventris. Our results refute previous reports of C. marginiventris being harmed by Bt proteins and suggest that such results were caused by prey-mediated effects due to using Bt-susceptible lepidopteran hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley TR (1979) Classification and distribution of fall armyworm parasites. Fla Entomol 62:114–123

    Article  Google Scholar 

  • Ashley TR, Wiseman BR, Davis FM, Andrews KL (1989) The fall armyworm: a bibliography. Fla Entomol 72:152–202

    Article  Google Scholar 

  • Boling JC, Pitre HN (1970) Life history of Apanteles marginiventris with descriptions of immature stages. J Kansas Entomol Soc 43:465–470

    Google Scholar 

  • Buntin GD, All JN, Lee RD, Wilson DM (2004) Plant-incorporated Bacillus thuringiensis resistance for control of fall armyworm and corn earworm (Lepidoptera : Noctuidae) in corn. J Econ Entomol 97:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhao JZ, Collins HL, Earle ED, Cao J, Shelton AM (2008) A critical assessment of the effects of Bt transgenic plants on parasitoids. PLoS One 3:e2284

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  Google Scholar 

  • Hellmich RL, Albajes R, Bergvinson D, Prasifka JR, Wang ZY, Weiss MJ (2008) The present and future role of insect-resistant genetically modified maize in IPM. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM programs. Springer, Berlin, pp 119–158

    Chapter  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops: 2012. ISAAA Briefs No. 44. International Service for the Acquisition of Agri-biotech Applications, Ithaca, NY

  • Jurat-Fuentes JL, Karumbaiah L, Jakka SRK et al (2011) Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One 6:e17606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy GG (2008) Integration of insect-resistant genetically modified crops within IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 1–26

    Chapter  Google Scholar 

  • Kumar H, Mihm JA (1996) Damage by fall armyworm Spodoptera frugiperda (J.E. Smith), southwestern corn borer Diatraea grandiosella Dyar and sugarcane borer Diatraea saccharalis Fabricius on maize in relation to seed treatment with selected insecticides in the fields. Maydica 41:235–239

    Google Scholar 

  • Kunnalaca S, Mueller AJ (1979) A laboratory study of Apanteles marginiventris, a parasite of green cloverworm. Environ Entomol 8:365–368

    Google Scholar 

  • Lövei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306

    Article  PubMed  Google Scholar 

  • Luginbill P (1928) The fall armyworm. USDA Technical Bulletin No. 34, pp 92

  • Marsh PM (1979) Family Braconidae. In: Vrombein KV, Hurd PD, Smith DR, Burks BD (eds) Catalog of Hymenoptera in America North of Mexico. Smithsonian Institute Press, Washington, pp 144–295

    Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    Article  CAS  PubMed  Google Scholar 

  • Matten SR, Head GP, Quemada HD (2008) How government regulations can help or hinder the integration of Bt crops within IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM programs. Springer, Berlin, pp 27–40

    Chapter  Google Scholar 

  • McCutcheon GS, Turnipseed SG, Sullivan MJ (1990) Parasitization of lepidopterans as affected by nematicide-insecticide use in soybean. J Econ Entomol 83:1002–1007

    CAS  Google Scholar 

  • Miller JC (1977) Ecological relationships among parasites of Spodoptera praefica. Environ Entomol 6:581–585

    Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use pattern. CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources 4:11. http://www.cabi.org/cabreview

  • Onstad D, Liu X, Chen M, Roush R, Shelton AM (2013) Modeling the integration of parasitism, insecticide and transgenic insecticidal crops for the long-term control of an insect pest. J Econ Entomol 106:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Romero R, Bernal JS, Chaufaux J, Kaiser L (2007) Impact assessment of Bt-maize on a moth parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae), via host exposure to purified Cry1Ab protein or Bt-plants. Crop Prot 26:953–962

    Article  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Bartsch D, Bigler F et al (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Hellmich RL, Candolfi MP et al (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romeis J, McLean MA, Shelton AM (2013) When bad science makes good headlines: the case of Bt maize and regulatory bans. Nat Biotechnol 37:386–387

    Article  Google Scholar 

  • Ruberson JR, Herzog GA, Lambert WR, Lewis WJ (1994) Management of the beet armyworm (Lepidoptera: Noctuidae) in cotton: role of natural enemies. Fla Entomol 77:440–453

    Article  Google Scholar 

  • SAS Institute (2001) PROC user’s manual, 6th edn. SAS Institute, Cary

    Google Scholar 

  • Schuler TH, Denholm I, Clark SJ, Stewart CN, Poppy GM (2004) Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Insect Physiol 50:435–443

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Naranjo SE, Romeis J et al (2009a) Setting the record straight: a rebuttal to an erroneous analysis on transgenic insecticidal crops and natural enemies. Transgenic Res 18:317–322

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Naranjo SE, Romeis J et al (2009b) Appropriate analytical methods are necessary to assess nontarget effects of insecticidal proteins in GM crops through meta-analysis (Response to Andow et al. 2009). Environ Entomol 38:1533–1538

    Article  CAS  PubMed  Google Scholar 

  • Siebert MW, Babock JM, Nolting S et al (2008) Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Fla Entomol 91:555–565

    Google Scholar 

  • Storer NP, Babcock JM, Schlenz M et al (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038

    Article  PubMed  Google Scholar 

  • Tabashnik BE, Van Rensburg JBJ, Carriere Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  CAS  PubMed  Google Scholar 

  • Tian JC, Collins HL, Romeis J, Naranjo SE, Hellmich RL, Shelton AM (2012) Using field-evolved resistance to Cry1F maize in a lepidopteran pest to demonstrate no adverse effects of Cry1F on one of its major predators. Transgenic Res 21:1303–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian JC, Wang X-P, Long L-P et al (2013) Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing Chrysoperla rufilabris. PLoS One 8:e60125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiewsiri K, Wang P (2011) Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proc Natl Acad Sci USA 108:14037–14042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vojtech E, Meissle M, Poppy GM (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesta marginiventris (Hymenoptera: Braconidae). Transgenic Res 14:133–144

    Article  CAS  PubMed  Google Scholar 

  • Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crops effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3:e2118. doi:10.1371/journal.pone.0002118

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Biotechnology Risk Assessment Program Competitive Grant No. 2010-33522-21772 from the USDA National Institute of Food and Agriculture. We thank H. Collins and M. Cheung for technical assistance and Mike Strand for supplying the initial colony of C. marginiventris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Shelton.

Additional information

Xiang-Ping Wang is a co-first author, equal contribution as first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, JC., Wang, XP., Long, LP. et al. Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris . Transgenic Res 23, 257–264 (2014). https://doi.org/10.1007/s11248-013-9748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9748-x

Keywords

Navigation