Skip to main content
Log in

Self-assembly of Mesoporous Ni–P Nanosphere Catalyst with Uniform Size and Enhanced Catalytic Activity in Nitrobenzene Hydrogenation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mesoporous Ni–P amorphous alloy nanospheres with controllable sizes and compositions were synthesized by chemical reduction of Ni(OH)2 colloidal particles co-assembling with surfactant hexadecyl-trimethyl-ammonium bromide in liquid crystal mesophase using hypophosphite as reductant. The effects of the synthesis conditions on the particle size, composition and mesostructure of the mesoporous Ni–P nanospheres were systematically studied. It was found that the size of the mesoporous Ni–P nanospheres could be tuned from 35 to 90 nm by changing the reduction temperature, and the phosphorus content of the Ni–P products could be adjusted in the range of 20.1 to 27.6 % by changing the molar ratio of H2PO2 /Ni2+. The active surface area and the thermal stability of the mesoporous Ni–P nanosphere catalyst are much higher than those for the conventional nonporous Ni–P amorphous alloy. In the liquid phase hydrogenation of nitrobenzene, the typical mesoporous Ni–P nanosphere catalyst exhibits much higher activity and better selectivity than the conventional nonporous Ni–P. The correlation between the catalytic performance and the structural properties is discussed based on the results of detailed characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geohegan JA, Bhagat SM (1981) Magnetic phases of amorphous transition metal-metalloid alloys. J Magn Magn Mater 25(1):17–32

    Article  CAS  Google Scholar 

  2. Weber TA, Stillinger FH (1985) Local order and structural transitions in amorphous metal-metalloid alloys. Phys Rev B 31(4):1954–1963

    Article  CAS  Google Scholar 

  3. Chen Y (1998) Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles. Catal Today 44(1–4):3–16

    Article  CAS  Google Scholar 

  4. Deng JF, Li HX, Wang WJ (1999) Progress in design of new amorphous alloy catalysts. Catal Today 51(1):113–125

    Article  CAS  Google Scholar 

  5. Wu ZJ, Li W, Zhang MH, Tao KY (2007) Advances in chemical synthesis and application of metal-metalloid amorphous alloy nanoparticulate catalysts. Front Chem Eng Chin 1(1):87–95

    Article  CAS  Google Scholar 

  6. Li H, Li HX, Dai WL, Wang WJ, Fang ZG, Deng JF (1999) XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties. Appl Surf Sci 152(1–2):25–34

    Article  CAS  Google Scholar 

  7. Chen YZ, Liaw BJ, Chiang SJ (2005) Selective hydrogenation of citral over amorphous NiB and CoB nano-catalysts. Appl Catal A Gen 284(1–2):97–104

    Article  CAS  Google Scholar 

  8. Ashassi-Sorkhabi H, Rafizadeh SH (2004) Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits. Surf Coat Technol 176(3):318–326

    Article  CAS  Google Scholar 

  9. Apachitei I, Duszczyk J (2000) Autocatalytic nickel coatings on aluminium with improved abrasive wear resistance. Surf Coat Technol 132(1):89–98

    Article  CAS  Google Scholar 

  10. Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216(1–2):343–352

    Article  CAS  Google Scholar 

  11. Oyama ST, Gott T, Zhao H, Lee Y-K (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143(1–2):94–107

    Article  CAS  Google Scholar 

  12. Sun FX, Wei ZB, Ying PL, Sun XP, Jiang ZX, Tian FP, Yang YX, Li C (2004) A novel highly active hydrodesulfurization catalyst: nickel phosphide supported on silica. Chin J Catal 25(9):685–687

    CAS  Google Scholar 

  13. Shen JY, Hu Z, Zhang LF, Li ZY, Chen Y (1991) The preparation of Ni-P ultrafine amorphous alloy particles by chemical-reduction. Appl Phys Lett 59(27):3545–3546

    Article  CAS  Google Scholar 

  14. Deng JF, Yang J, Sheng SS, Chen HG, Xiong GX (1994) The study of ultrafine Ni-B and Ni-P amorphous alloy powders as catalysts. J Catal 150(2):434–438

    Article  CAS  Google Scholar 

  15. Lee SP, Chen YW (1999) Selective hydrogenation of furfural on Ni-P, Ni-B, and Ni-P-B ultrafine materials. Ind Eng Chem Res 38(7):2548–2556

    Article  CAS  Google Scholar 

  16. Li HX, Xu YP (2001) Liquid phase benzene hydrogenation to cyclohexane over modified Ni-P amorphous catalysts. Mater Lett 51(2):101–107

    Article  CAS  Google Scholar 

  17. Zhu Y, Liu FP, Ding WP, Guo XF, Chen Y (2006) Noncrystalline metal-boron nanotubes: synthesis, characterization, and catalytic-hydrogenation properties. Angew Chem Int Ed 45(43):7211–7214

    Article  CAS  Google Scholar 

  18. Li HX, Zhao QF, Wan Y, Dai WL, Qiao MH (2006) Self-assembly of mesoporous Ni-B amorphous alloy catalysts. J Catal 244(2):251–254

    Article  CAS  Google Scholar 

  19. Li H, Zhang DQ, Li GS, Xu Y, Lu YF, Li HX (2010) Mesoporous Ni-B amorphous alloy microspheres with tunable chamber structure and enhanced hydrogenation activity. Chem Commun 46(5):791–793

    Article  CAS  Google Scholar 

  20. Li H, Yang HX, Li HX (2007) Highly active mesoporous Co–B amorphous alloy catalyst for cinnamaldehyde hydrogenation to cinnamyl alcohol. J Catal 251(1):233–238

    Article  CAS  Google Scholar 

  21. Li H, Liu J, Yang HX, Li HX (2009) Mesoporous Co–B amorphous alloy films with enhanced catalytic efficiency prepared from a mixed-surfactant solution. J Mater Res 24(11):3300–3307

    Article  CAS  Google Scholar 

  22. Meng Q, Li H, Li HX (2008) Self-assembly of mesoporous ruthenium-boron amorphous alloy catalysts with enhanced activity in maltose hydrogenation to maltitol. J Phys Chem C 112(30):11448–11453

    Article  CAS  Google Scholar 

  23. Tong DG, Wei C, Luo YY, Hong C, Ji XY (2007) Preparation and characterization of amorphous Co–B catalysts with mesoporous structure. J Mol Catal A Chem 269(1–2):149–157

    Article  CAS  Google Scholar 

  24. Tong DG, Han X, Chu W, Chen H, Ji XY (2007) Preparation of mesoporous Co–B catalyst via self-assembled triblock copolymer templates. Mater Lett 61(25):4679–4682

    Article  CAS  Google Scholar 

  25. Tong DG, Chu W, Zeng XL, Tian W, Wang D (2009) Synthesis of mesoporous Co–B alloy in room-temperature ionic liquids and its electrochemical properties. Mater Lett 63(17):1555–1557

    Article  CAS  Google Scholar 

  26. Heaton CA (1991) An introduction to industrial chemistry, 2nd edn. Blackie and Son Ltd., Glasgow

    Book  Google Scholar 

  27. Burge HD, Collins DJ, Davis BH (1980) Intermediates in the Raney-nickel catalyzed hydrogenation of nitrobenzene to aniline. Ind Eng Chem Prod Res Dev 19(3):389–391

    Article  CAS  Google Scholar 

  28. Lee SP, Chen YW (2000) Nitrobenzene hydrogenation on Ni–P, Ni–B, and Ni–P–B ultrafine materials. J Mol Catal A Chem 152(1–2):213–223

    Article  CAS  Google Scholar 

  29. Zhao F, Ikushima Y, Arai M (2004) Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size. J Catal 224(2):479–483

    Article  CAS  Google Scholar 

  30. Mahata N, Cunha AF, Orfao JJM, Figueiredo JL (2008) Hydrogenation of nitrobenzene over nickel nanoparticles stabilized by filamentous carbon. Appl Catal A Gen 351(2):204–209

    Article  CAS  Google Scholar 

  31. Bartholomew CH, Farrauto RJ (1976) Chemistry of nickel-alumina catalysts. J Catal 45(1):41–53

    Article  CAS  Google Scholar 

  32. Xie SH, Qiao MH, Zhou WZ, Luo G, He HY, Fan KN, Zhao TJ, Yuan WK (2005) Controlled synthesis, characterization, and crystallization of Ni–P nanospheres. J Phys Chem B 109(51):24361–24368

    Article  CAS  Google Scholar 

  33. Shen JY, Zhang QH, Li ZY, Chen Y (1996) Chemical reaction for the preparation of Ni–P ultrafine amorphous alloy particles from aqueous solution. J Mater Sci Lett 15(8):715–717

    Article  CAS  Google Scholar 

  34. Deng YD, Zhao L, Liu L, Shen B, Hu WB (2005) Submicrometer-sized hollow nickel spheres synthesized by autocatalytic reduction. Mater Res Bull 40(10):1864–1870

    Article  CAS  Google Scholar 

  35. Hubert DHW, Jung M, Frederik PM, Bomans PHH, Meuldijk J, German AL (2000) Vesicle-directed growth of silica. Adv Mater 12(17):1286–1290

    Article  CAS  Google Scholar 

  36. Xu HL, Wang WZ (2007) Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew Chem Int Ed 46(9):1489–1492

    Article  CAS  Google Scholar 

  37. Ma YF, Li W, Zhang MH, Zhou Y, Tao KY (2003) Preparation and catalytic properties of amorphous alloys in hydrogenation of sulfolene. Appl Catal A Gen 243(2):215–223

    Article  CAS  Google Scholar 

  38. Ma YF, Zhang MH, Li W, Zhang BG, Tao KY (2004) Preparation and catalytic activity of NiP amorphous alloy with high surface area. Chin J Catal 25(12):973–978

    CAS  Google Scholar 

  39. Mehta SK, Kumar S, Chaudhary S, Bhasin KK, Gradzielski M (2009) Evolution of ZnS nanoparticles via facile CTAB aqueous micellar solution route: a study on controlling parameters. Nanoscale Res Lett 4(1):17–28

    Article  CAS  Google Scholar 

  40. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  41. van Wonterghem J, Mørup S, Koch CJW, Charles SW, Wells S (1986) Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution. Nature 322(6080):622–623

    Article  CAS  Google Scholar 

  42. Osaka T, Arai K, Masubuchi N, Yamazaki Y, Namikawa T (1989) Transmission electron microscopic study of electroless nickel-molybdenum-boron alloy films. Jpn J Appl Phys 28(1):866–871

    Article  CAS  Google Scholar 

  43. Keong KG, Sha W, Malinov S (2002) Crystallization and phase transformation behaviour of electroless nickel-phosphorus deposits with low and medium phosphorus contents under continuous heating. J Mater Sci 37(20):4445–4450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20803009) and the Shanghai Science and Technology Committee (12ZR1401400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueying Chen or Heyong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Chen, X., Yue, B. et al. Self-assembly of Mesoporous Ni–P Nanosphere Catalyst with Uniform Size and Enhanced Catalytic Activity in Nitrobenzene Hydrogenation. Top Catal 55, 1022–1031 (2012). https://doi.org/10.1007/s11244-012-9884-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9884-1

Keywords

Navigation