Skip to main content
Log in

Heterogeneity of V2O5(010) surfaces – the role of alkali metal dopants

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Any solid oxide-originated catalyst is extremely heterogeneous due to several factors. First, it may consist of various phases, each exposing different surfaces characterized by different electronic, and thus catalytic, properties. However, even a particular surface of a chosen phase is heterogeneous as it consists of different chemical elements connected in polyhedra bonded with each other via corners and/or edges and/or walls. In addition, dopants and supports change properties of the surface by enriching its heterogeneity. In the following, the role of dopants as potential sources of surface heterogeneity is discussed, using vanadia as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BASF, British Patent 1,140,264 (1969)

  2. Wacker Chemie, British Patent 4,385,496 (1972)

  3. L. Lietti P. Forzatti G. Ramis G. Busca F. Bregani (1993) Appl. Catal. B 3 13 Occurrence Handle1:CAS:528:DyaK2cXhtFGms7c%3D Occurrence Handle10.1016/0926-3373(93)80065-L

    Article  CAS  Google Scholar 

  4. J.P. Chen R.T. Yang (1990) J. Catal. 125 411 Occurrence Handle1:CAS:528:DyaK3cXlvFyru7o%3D Occurrence Handle10.1016/0021-9517(90)90314-A

    Article  CAS  Google Scholar 

  5. M. Tokarz S. Järås B. Persson (1991) Catalyst Deactivation C.H. Bartholomew J.B. Butt (Eds) Studies in Surface Science NumberInSeries68 Elsevier Amsterdam 523

    Google Scholar 

  6. K.H.J. Weissermel Arpe H.J. Arpe (1993) Industrial Organic Chemistry EditionNumber2 Verlag Chemie Weinheim

    Google Scholar 

  7. G. Deo I.E. Wachs (1994) J. Catal. 146 335 Occurrence Handle1:CAS:528:DyaK2cXisVOkt7o%3D Occurrence Handle10.1006/jcat.1994.1072

    Article  CAS  Google Scholar 

  8. F. Arena N. Giordano A. Parmaliana (1997) J. Catal. 167 66 Occurrence Handle1:CAS:528:DyaK2sXivV2iu7c%3D Occurrence Handle10.1006/jcat.1997.1546

    Article  CAS  Google Scholar 

  9. J. Zhu S.L.T. Anderson (1989) J. Chem. Soc. Faraday Trans. 185 3629

    Google Scholar 

  10. J. Miki Y. Osada T. Konoshi Y. Tachibana T. Shikada (1996) Appl. Catal. A 137 93 Occurrence Handle1:CAS:528:DyaK28Xhslejsbc%3D Occurrence Handle10.1016/0926-860X(95)00304-5

    Article  CAS  Google Scholar 

  11. H.H. Kung (1994) Adv. Catal. 40 1 Occurrence Handle1:CAS:528:DyaK2MXktlyktb4%3D

    CAS  Google Scholar 

  12. G. Busca (1995) Catal. Today 24 307 Occurrence Handle10.1016/0920-5861(95)00051-G

    Article  Google Scholar 

  13. E.A. Mamedov V. Cortés-Corberán (1995) Appl. Catal. A 127 1 Occurrence Handle1:CAS:528:DyaK2MXmtVygtb8%3D Occurrence Handle10.1016/0926-860X(95)00056-9

    Article  CAS  Google Scholar 

  14. F. Cavani F. Trifirò (1995) Catal. Today 36 431 Occurrence Handle10.1016/S0920-5861(96)00234-9

    Article  Google Scholar 

  15. B. Grzybowska (1997) J. Catal. 68 423

    Google Scholar 

  16. I.E. Wachs B.M. Weckhuysen (1997) Appl. Catal. A 157 67 Occurrence Handle1:CAS:528:DyaK2sXkvVOqtrY%3D Occurrence Handle10.1016/S0926-860X(97)00021-5

    Article  CAS  Google Scholar 

  17. M. Baerns O. Buyevskaya (1998) Catal. Today 45 13 Occurrence Handle1:CAS:528:DyaK1cXntVGjtr8%3D Occurrence Handle10.1016/S0920-5861(98)00231-4

    Article  CAS  Google Scholar 

  18. R.K. Grasselli (1999) Catal. Today 49 141 Occurrence Handle1:CAS:528:DyaK1MXps1Kgug%3D%3D Occurrence Handle10.1016/S0920-5861(98)00418-0

    Article  CAS  Google Scholar 

  19. M. Sanati S.L.T. Anderson (1990) J. Mol. Catal. 59 233 Occurrence Handle1:CAS:528:DyaK3cXmtFWmsLo%3D Occurrence Handle10.1016/0304-5102(90)85055-M

    Article  CAS  Google Scholar 

  20. P. Cavalli F. Cavani I. Manenti F. Trifirò (1987) Catal. Today 1 45 Occurrence Handle10.1016/0920-5861(87)80043-3

    Article  Google Scholar 

  21. M. Ponzi C. Duschatzky A. Carrascull E. Ponzi (1998) Appl. Catal. A 169 373 Occurrence Handle1:CAS:528:DyaK1cXis1Oms7s%3D Occurrence Handle10.1016/S0926-860X(98)00026-X

    Article  CAS  Google Scholar 

  22. J. Zhu S.L.T. Anderson (1989) J. Chem. Soc. Faraday Trans. 1 85 3629 Occurrence Handle1:CAS:528:DyaL1MXmtFCjsLg%3D Occurrence Handle10.1039/f19898503629

    Article  CAS  Google Scholar 

  23. R. Grabowski B. Grzybowska K. Samson J. Słoczyński J. Stoch K. Wcisło (1995) Appl. Catal. A 125 129 Occurrence Handle1:CAS:528:DyaK2MXlsFCjt7g%3D Occurrence Handle10.1016/0926-860X(94)00274-6

    Article  CAS  Google Scholar 

  24. B. Grzybowska P. Mekšs R. Grabowski K. Wcisło Y. Barbaux L. Gengembre (1994) Stud. Surf. Sci. Catal. 82 151 Occurrence Handle1:CAS:528:DyaK2MXmtF2gurg%3D

    CAS  Google Scholar 

  25. B. Grzybowska-Świerkosz (2002) Topics Catal. 21 35 Occurrence Handle10.1023/A:1020547830167

    Article  Google Scholar 

  26. D. Courcot B. Grzybowska Y. Barbaux M. Rigole A. Ponchel M. Guelton (1996) J. Chem. Soc. Faraday Trans. 92 1609 Occurrence Handle1:CAS:528:DyaK28XjtFOht74%3D Occurrence Handle10.1039/ft9969201609

    Article  CAS  Google Scholar 

  27. P. Concepción S. Kuba H. Knözinger B. Solsona J.M. López Nieto (2000) Stud. Surf. Sci. Catal. 130 767 Occurrence Handle10.1016/S0167-2991(00)81051-4

    Article  Google Scholar 

  28. G. Deo I.E. Wachs (1994) J. Catal. 146 335 Occurrence Handle1:CAS:528:DyaK2cXisVOkt7o%3D Occurrence Handle10.1006/jcat.1994.1072

    Article  CAS  Google Scholar 

  29. G. Ramis G. Busca (1993) Catal. Lett. 18 299 Occurrence Handle1:CAS:528:DyaK3sXlvV2gtrw%3D Occurrence Handle10.1007/BF00769450

    Article  CAS  Google Scholar 

  30. V. Ermini E. Finocchio S. Sechi Guido Busca Stefano Rossini (2000) Appl. Catal. A 198 67 Occurrence Handle1:CAS:528:DC%2BD3cXisFaks7k%3D Occurrence Handle10.1016/S0926-860X(99)00499-8

    Article  CAS  Google Scholar 

  31. D.A. Bulushev L. Kiwi-Minsker A. Renken (2000) Appl. Catal. A 202 243 Occurrence Handle1:CAS:528:DC%2BD3cXktleisb4%3D Occurrence Handle10.1016/S0926-860X(00)00538-X

    Article  CAS  Google Scholar 

  32. M. Ai (1977) Bull. Chem. Soc. Jpn 50 355 Occurrence Handle1:CAS:528:DyaE2sXhsVKntbo%3D Occurrence Handle10.1246/bcsj.50.355

    Article  CAS  Google Scholar 

  33. G.K. Boreskov A.A. Ivanov O.M. Ilyinich V.G. Ponomareva (1975) React. Kinet. Catal. Lett. 3 1 Occurrence Handle1:CAS:528:DyaE28XovFagug%3D%3D Occurrence Handle10.1007/BF02216882

    Article  CAS  Google Scholar 

  34. T. Blasco J.M. López Nieto (1997) Appl. Catal. A 157 117 Occurrence Handle1:CAS:528:DyaK2sXkvVOqt7w%3D Occurrence Handle10.1016/S0926-860X(97)00029-X

    Article  CAS  Google Scholar 

  35. A.A. Lemonidou L. Nalbandian I.A. Vasalos (2000) Catal. Today 61 333 Occurrence Handle1:CAS:528:DC%2BD3cXmtF2mtrY%3D Occurrence Handle10.1016/S0920-5861(00)00393-X

    Article  CAS  Google Scholar 

  36. C. Martin V. Rives A.R. Gonzalez-Elipe (1988) J. Catal. 114 473 Occurrence Handle10.1016/0021-9517(88)90053-X

    Article  Google Scholar 

  37. M.G. Nobbenhuis P. Hug T. Mallat A. Baiker (1994) Appl. Catal. A 108 241 Occurrence Handle1:CAS:528:DyaK2cXhtlGiur8%3D Occurrence Handle10.1016/0926-860X(94)85073-9

    Article  CAS  Google Scholar 

  38. R.X. Valenzuela E.A. Mamedov V. Cortés-Corberán (1995) React. Kin. Catal. Lett. 55 213 Occurrence Handle1:CAS:528:DyaK2MXntFGnsbc%3D Occurrence Handle10.1007/BF02075853

    Article  CAS  Google Scholar 

  39. J. Słoczyński (1996) Appl. Catal. A 146 401 Occurrence Handle10.1016/S0926-860X(96)00172-X

    Article  Google Scholar 

  40. V.A. Zazhigalov J. Haber J. Stoch I.V. Bacherikova G.A. Komashko A.I. Pyatnitskaya (1996) Appl. Catal. A 134 225 Occurrence Handle1:CAS:528:DyaK28XlvVChtQ%3D%3D Occurrence Handle10.1016/0926-860X(95)00197-2

    Article  CAS  Google Scholar 

  41. R.W.G. Wyckoff (1965) Crystal Structures Interscience/Wiley New York

    Google Scholar 

  42. M. Niwa Y. Matsuoka Y. Murakami (1989) J. Phys. Chem. 93 3660 Occurrence Handle1:CAS:528:DyaL1MXhvVSjur4%3D Occurrence Handle10.1021/j100346a057

    Article  CAS  Google Scholar 

  43. M. Gąsior T. Machej (1983) J. Catal. 83 472 Occurrence Handle10.1016/0021-9517(83)90073-8

    Article  Google Scholar 

  44. P. Courtine, in: Solid State Chemistry in Catalysis, Vol. 279, eds. R.K. Grasselli and J. Brazdil (ACS Symposium Series, 1985) p. 37

  45. A. Vejux P. Courtine (1978) J. Solid State Chem. 23 93 Occurrence Handle1:CAS:528:DyaE1cXpsFCnug%3D%3D Occurrence Handle10.1016/0022-4596(78)90055-5

    Article  CAS  Google Scholar 

  46. M. Witko, K. Hermann, R. Tokarz, R. Druzinic and A. Chakrabarti, in: Metal–Ligand Interactions in Chemistry, Physics and Biology, eds. N. Russo and D.R. Salahub (Kluwer Academic Publishers, Netherland, 2000) p. 417

  47. K. Hermann, L.G.M. Pettersson, M.E. Casida, C. Daul, A. Goursot, A. Koester, E. Proynov, A. St-Amant, D.R. Salahub, V. Carravetta, H. Duarte, N. Godbout, J. Guan, C. Jamorski, M. Leboeuf, V. Malkin, O. Malkina, M. Nyberg, L. Pedocchi, F. Sim, L. Triguero and A. Vela, StoBe-deMon version 1.0, StoBe Software, 2002

  48. S.H. Vosko L. Wilk M. Nusair (1980) Can. J. Phys. 58 1200 Occurrence Handle1:CAS:528:DyaL3cXlvFagt74%3D Occurrence Handle10.1139/p80-159

    Article  CAS  Google Scholar 

  49. N. Godbout D.R. Salahub J. Andzelm E. Wimmer (1992) Can. J. Chem. 70 560 Occurrence Handle1:CAS:528:DyaK38XkvFOltLc%3D Occurrence Handle10.1139/v92-079

    Article  CAS  Google Scholar 

  50. deMon folklore, http://www.demon-software.com/public_html/BASIS.html

  51. A. Koester, Koester Collection A2 Auxiliary Basis Set deMon2000 library

  52. D.F. Shanno (1985) J. Optimization Theory Appl. 46 87 Occurrence Handle10.1007/BF00938762

    Article  Google Scholar 

  53. J.E. Huheey E.A. Keiter R.L. Keiter (1993) Inorganic Chemistry: Principles of Structure and Reactivity EditionNumber4 HarperCollins New York

    Google Scholar 

  54. M.S. Whittingham (2004) Chem. Rev. 104 4271 Occurrence Handle1:CAS:528:DC%2BD2cXnsVOnsbk%3D Occurrence Handle10.1021/cr020731c

    Article  CAS  Google Scholar 

  55. B. Grzybowska-Świerkosz (1997) Appl. Catal. A 157 409 Occurrence Handle10.1016/S0926-860X(97)00115-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Witko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witko, M., Grybos, R. & Tokarz-Sobieraj, R. Heterogeneity of V2O5(010) surfaces – the role of alkali metal dopants. Top Catal 38, 105–115 (2006). https://doi.org/10.1007/s11244-006-0075-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0075-9

Keywords

Navigation