Skip to main content
Log in

Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

We have successfully prepared two ruthenium-based covalent bonding photosensitizer–catalyst dyads through a simple procedure. 1H NMR spectra of both dyads show that only a single stereoisomer was formed for each dyad. The spectroscopic and electrochemical properties and photocatalytic water oxidation activities of both dyads were investigated in detail. The results indicate that there is negligible electron communication between the photosensitizer and catalyst centers, and each component maintains the desired photophysical and electrochemical properties, which would diminish excited-state electron recombination by facilitating the intramolecular electron transfer. In the presence of excess sacrificial electron acceptor, the dyad with iodide ligand shows a 5.5-fold increase in catalytic performance as compared to its chloro analogue, indicating that the iodide ligand plays an important role during the catalytic cycle. Moreover, compared with the multi-component system, the dyad with iodide ligand exhibits a fourfold increase in catalytic turnover number.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yagi M, Kaneko M (2001) Chem Rev 101:21–36

    Article  CAS  PubMed  Google Scholar 

  2. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729–15737

    Article  CAS  PubMed  Google Scholar 

  3. Barber J (2009) Chem Soc Rev 3:185–196

    Article  Google Scholar 

  4. Li T-T, Chen Y, Li F, Zhao W, Wang C, Lv X, Xu Q, Fu W (2014) Chem Eur J 20:8054–8061

    Article  CAS  PubMed  Google Scholar 

  5. Li T-T, Qian J, Zheng Y-Q (2016) RSC Adv 6:77358–77365

    Article  CAS  Google Scholar 

  6. Meyer K, Ranocchiari M, van Bokhoven JA (2015) Energy Environ Sci 8:1923–1937

    Article  CAS  Google Scholar 

  7. Blakemore JD, Crabtree RH, Brudvig GW (2015) Chem Rev 115:12974–13005

    Article  CAS  PubMed  Google Scholar 

  8. Karkas MD, Verho O, Johnston EV, Åkermark B (2014) Chem Rev 114:11863–12001

    Article  CAS  PubMed  Google Scholar 

  9. Li T-T, Zheng Y-Q (2016) Dalton Trans 45:12685–12690

    Article  CAS  PubMed  Google Scholar 

  10. Limburg B, Bouwman E, Bonnet S (2012) Coord Chem Rev 256:1451–1467

    Article  CAS  Google Scholar 

  11. Singh A, Spiccia L (2013) Coord Chem Rev 257:2607–2622

    Article  CAS  Google Scholar 

  12. Li F, Jiang Y, Zhang B, Huang F, Gao Y, Sun L (2012) Angew Chem Int Ed 51:2417–2420

    Article  CAS  Google Scholar 

  13. Sun L, Hammarström L, Åkermarka B, Styring S (2001) Chem Soc Rev 30:36–49

    Article  CAS  Google Scholar 

  14. Ashford DL, Stewart DJ, Glasson CR, Binstead RA, Harrison DP, Norris MR, Concepcion JJ, Fang Z, Templeton JL, Meyer TJ (2012) Inorg Chem 51:6428–6430

    Article  CAS  PubMed  Google Scholar 

  15. Norris MR, Concepcion JJ, Harrison DP, Binstead RA, Ashford DL, Fang Z, Templeton JL, Meyer TJ (2013) J Am Chem Soc 135:2080–2083

    Article  CAS  PubMed  Google Scholar 

  16. Kaveevivitchai N, Chitta R, Zong R, Ojaimi ME, Thummel RP (2012) J Am Chem Soc 134:10721–10724

    Article  CAS  PubMed  Google Scholar 

  17. Kohler L, Kaveevivitchai N, Zong R, Thummel RP (2014) Inorg Chem 53:912–921

    Article  CAS  PubMed  Google Scholar 

  18. Nair NV, Zhou R, Thummel RP (2017) Inorg Chim Acta 454:27–39

    Article  CAS  Google Scholar 

  19. Li T-T, Li F-M, Zhao W-L, Tian Y-H, Chen Y, Cai R, Fu W-F (2015) Inorg Chem 54:183–191

    Article  CAS  PubMed  Google Scholar 

  20. Broomhead JA, Young CG (1982) Inorg Synth 21:127–128

    CAS  Google Scholar 

  21. Takeuchi KJ, Thompson MS, Pipes DW, Meyer TJ (1984) Inorg Chem 23:1845–1851

    Article  CAS  Google Scholar 

  22. Kaveevivitchai N, Zong R, Tseng H-W, Chitta R, Thummel RP (2012) Inorg Chem 51:2930–2939

    Article  CAS  PubMed  Google Scholar 

  23. McClanahan SF, Dallinger RF, Holler FJ, Kincaid JR (1985) J Am Chem Soc 107:4853–4860

    Article  CAS  Google Scholar 

  24. Herrero C, Quaranta A, Fallahpour RA, Leibl W, Aukauloo A (2013) J Phys Chem C 117:9605–9612

    Article  CAS  Google Scholar 

  25. Swavey S, Fang Z, Brewer KJ (2002) Inorg Chem 41:2598–2607

    Article  CAS  PubMed  Google Scholar 

  26. Hamelin O, Guillo P, Loiseau F, Boissonnet M-F, Menage S (2011) Inorg Chem 50:7952–7954

    Article  CAS  PubMed  Google Scholar 

  27. Canterbury TR, Arachchige SM, Moore RB, Brewer KJ (2015) Angew Chem Int Ed 54:12819–12822

    Article  CAS  Google Scholar 

  28. Herrero C, Quaranta A, Leibl W, Rutherford AW, Aukauloo A (2011) Energy Environ Sci 4:2353–2365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21603110) and K. C. Wong Magna Fund in Ningbo University. Y. Z. thanks the support from K. C. Wong Education Foundation, Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Ting Li or Yue-Qing Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhou, Q., Li, TT. et al. Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance. Transit Met Chem 44, 349–354 (2019). https://doi.org/10.1007/s11243-018-00301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-00301-3

Navigation