Skip to main content
Log in

Monomeric and polymeric structures derived from 3,3′,4,4′-biphenyltetracarboxylic acid, phenanthroline and metal ions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Under similar hydrothermal synthetic conditions, the reactions of Fe(NO3)3/FeCl2, CuCl2, NiCl2, and CdCl2 with phenanthroline (phen) and 3,3′,4,4′-biphenyltetracarboxylic acid (H4BPTC) afforded complexes [Fe(phen)3](H3BPTC)2 (1), [Cu(phen)(BPTC)0.5 · H2O] · H2O (2), [Ni3(phen)3(BPTC)1.5(H2O)5] · 4H2O (3) and [Cd(phen)(BPTC)0.5] · H2O (4). The short Fe–N distance in the monomeric Fe(phen)3(H3 BPTC)2 (1) shows that the Fe(II) is in a low-spin state. H3 BPTC4− acts as a counter-ion in this complex. In [Cu(phen)(BPTC)0.5 · H2O] · H2O (2), the central Cu(II) is five-coordinated in a square-pyramidal geometry. The ligand BPTC4− is centrosymmetric and the four deprotonated carboxylic groups of BPTC4− are coordinated to four different copper ions to form a 1D ladder complex indicating a comparatively strong coordination. In [Ni3(phen)3(BPTC)1.5(H2O)5] · 4H2O (3), all nickel(II) atoms are in an octahedral coordination environment. There are two different BPTC4− ligands; one is centrosymmetric and the other is asymmetric. Metal ions are linked through fully deprotonated BPTC4− ligands to form a 2D metal-organic sheet. [Cd(phen)(BPTC)0.5] · H2O (4) has a 3D metal-organic framework. TG, IR, and fluorescence data for the complexes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Chart 1
Fig. 1
Fig. 2
Fig. 3
Chart 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Acc Chem Res 31:474

    Article  CAS  Google Scholar 

  2. Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Acc Chem Res 38:176

    Article  CAS  Google Scholar 

  3. Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) J Am Chem Soc 129:1858

    Article  CAS  Google Scholar 

  4. Ma S, Sun D, Wang X-S, Zhou H-C (2007) Angew Chem Int Ed 46:2458

    Article  CAS  Google Scholar 

  5. Ma S, Sun D, Wang X-S, Zhou H-C (2007) Abstracts of papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25–29, 2007, INOR

  6. Ma S, Wang X-S, Manis Erika S, Collier Christopher D, Zhou H-C (2007) Inorg Chem 46:3432

    Article  CAS  Google Scholar 

  7. Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) J Am Chem Soc 127:1504

    Article  CAS  Google Scholar 

  8. Kim D, Kim J, Jung DH, Lee TB, Choi SB, Yoon JH, Kim J, Choi K, Choi S-H (2007) Catal Today 120:317

    Article  CAS  Google Scholar 

  9. Yang Q, Zhong C (2005) J Phys Chem B 109:11862

    Article  CAS  Google Scholar 

  10. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127

    Article  CAS  Google Scholar 

  11. Rowsell Jesse LC, Yaghi Omar M (2005) Angew Chem Int Ed 44:4670

    Article  CAS  Google Scholar 

  12. Hirscher M, Panella B (2007) Scripta Mater 56:809

    Article  CAS  Google Scholar 

  13. Bordiga S, Vitillo Jenny G, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjorgen M, Hafizovic J, Lillerud Karl P (2005) J Phys Chem B 109:18237

    Article  CAS  Google Scholar 

  14. Shi X, Zhu GS, Wang XH, Li GH, Fang QR, Wu G, Ge T, Xue M, Zhao XJ, Wang RW, Qiu SL (2005) Cryst Growth Design 5:207

    Article  CAS  Google Scholar 

  15. Mantero DG, Neels A, Stoeckli-Evans H (2006) Inorg Chem 45:3287

    Article  CAS  Google Scholar 

  16. Svetlichnyi VM, Kudryavtsev VV (2003) Polym Science B 45:140

    Google Scholar 

  17. Wang X-L, Qin C, Wang E-B, Xu L (2005) Eur J Inorg Chem 3418

  18. Wang X-L, Qin C, Wang E-B (2006) Cryst Growth Design 6:439

    Article  CAS  Google Scholar 

  19. Hao XR, Su ZM, Zhao YH, Shao KZ, Wang Y (2005) Acta Crystallogr E61:m2477

    CAS  Google Scholar 

  20. Hao XR, Su ZM, Zhao YH, Shao KZ, Wang Y (2005) Acta Crystallogr C61:m469

    CAS  Google Scholar 

  21. Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) Angew Chem Int Ed 44:4745

    Article  CAS  Google Scholar 

  22. Chen B, Ockwig NW, Fronczek FR, Contreras DS, Yaghi OM (2005) Inorg Chem 44:181

    Article  CAS  Google Scholar 

  23. Contreras DS, Clancy YL, Chen B (2005) Abstracts of papers, 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005, INOR

  24. Ruben M, Payer D, Landa A, Comisso A, Gattinoni C, Lin N, Collin J-P, Sauvage J-P, De Vita A, Kern K (2006) J Am Chem Soc 128:15644

    Article  CAS  Google Scholar 

  25. Devic T, Serre C, Audebrand N, Marrot J, Ferey G (2005) J Am Chem Soc 127:12788

    Article  CAS  Google Scholar 

  26. Wang J-J, Yang M-L, Hu H-M, Xue G-L, Li D-S, Shi Q-Z (2007) Zeit Anorg Allg Chem 633:341

    Article  CAS  Google Scholar 

  27. Sheldrick GM (1997) University of Göttingen, Göttingen, Germany

  28. Walczak MM, Flynn NT (1998) J Electroanal Chem 441:43

    Article  CAS  Google Scholar 

  29. Jezek J, Dilleen JW, Haggett BGD, Fogg AG, Birch BJ (2007) Talanta 71:202

    Article  CAS  Google Scholar 

  30. Mao HY, Zhang CZ, Xu C, Zhang HY, Shen XQ, Wu BL, Zhu Y, Wu QG, Wang H (2005) Inorg Chim Acta 358:1934

    Article  CAS  Google Scholar 

  31. Colacio E, Dominguez-Vera JM, Lloret F, Sanchez JMM, Kivekas R, Rodriguez A, Sillanpaa R (2003) Inorg Chem 42:4209

    Article  CAS  Google Scholar 

  32. Chu DQ, Xu JQ, Duan LM, Wang TG, Tang AQ, Ye L (2001) Eur J Inorg Chem 1135

  33. Filippova IG, Simonov YA, Gdanets M, Stavila V (2005) J Stru Chem 46:1095

    Article  CAS  Google Scholar 

  34. Johansson L, Molund M, Oskarsson A (1978) Inorg Chim Acta 31:117

    Article  CAS  Google Scholar 

  35. Bukowski MR, Zhu S, Koehntop KD, Brennessel WW, Que L (2004) J Biol Inorg Chem 9:39

    Article  CAS  Google Scholar 

  36. Lee EC, Kim D, Jurecka P, Tarakeshwar P, Hobza P, Kim KS (2007) J Phys Chem A 111:3446

    Article  CAS  Google Scholar 

  37. Schottel BL, Chifotides HT, Shatruk M, Chouai A, Perez LM, Bacsa J, Dunbar KR (2006) J Am Chem Soc 128:5895

    Article  CAS  Google Scholar 

  38. Cai JH, Jiang YM, Wang XJ, Liu ZM (2004) Acta Cryst E60:m1659

    CAS  Google Scholar 

  39. Gasser G, Belousoff Matthew J, Bond Alan M, Spiccia L (2007) Inorg Chem 46:3876

    Article  CAS  Google Scholar 

  40. Melchart M, Habtemariam A, Parsons S, Moggach SA, Sadler PJ (2006) Inorg Chim Acta 359:3020

    Article  CAS  Google Scholar 

  41. Guo X, Zhu G, Fang Q, Xue M, Tian G, Sun J, Li X, Qiu S (2005) Inorg Chem 44:3850

    Article  CAS  Google Scholar 

  42. Diaz A, Martinez M, Medina A, Gonzalez JR, Colon JL (2006) Abstracts of papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30, 2006, INOR

  43. Chen Z-r, Li J-h, Chen Y, Zhang X-f (2002) Fuzhou Daxue Xuebao Ziran Kexueban 30:240

    CAS  Google Scholar 

  44. Zang S, Su Y, Li Y, Ni Z, Zhu H, Meng Q (2006) Inorg Chem 45:3855

    Article  CAS  Google Scholar 

  45. Leroy-Lhez S, Fages F (2005) Comptes Rendus Chimie 8:1204

    Article  CAS  Google Scholar 

  46. Ha C-S, Park H-D, Frank CW (2000) Chem Mat 12:839

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The project was supported by the Development Foundation of Shanghai Municipal Education Committee, China (Grant No. 06AZ098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shourong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Zhang, H., Shao, M. et al. Monomeric and polymeric structures derived from 3,3′,4,4′-biphenyltetracarboxylic acid, phenanthroline and metal ions. Transition Met Chem 33, 669–680 (2008). https://doi.org/10.1007/s11243-008-9095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9095-6

Keywords

Navigation