Skip to main content
Log in

An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The article deals with nonlinear thermal instability problem of double-diffusive convection in a porous medium subjected to temperature/gravity modulation. Three types of imposed time-periodic boundary temperature (ITBT) are considered. The effect of imposed time-periodic gravity modulation (ITGM) is also studied in this problem. In the case of ITBT, the temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent periodic part. The temperature of both walls is modulated in this case. In the problem involving ITGM, the gravity field has two parts: a constant part and an externally imposed time-periodic part. Using power series expansion in terms of the amplitude of modulation, which is assumed to be small, the problem has been studied using the Ginzburg–Landau amplitude equation. The individual effects of temperature and gravity modulation on heat and mass transports have been investigated in terms of Nusselt number and Sherwood number, respectively. Further the effects of various parameters on heat and mass transports have been analyzed and depicted graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Amplitude of streamline perturbation

d :

Height of the fluid layer

Da :

Darcy number Da \({=\frac{K}{d^{2}} }\)

g :

Acceleration due to gravity

g m (τ):

Modulation in gravity \({g_{m}({\tau })=\epsilon^{2}\delta_{2} Cos(\omega \tau)}\)

k c :

Critical wavenumber

Le :

Lewis number, \({Le=\frac{\kappa _{T}}{\kappa _{S}}}\)

Nu :

Nusselt number

p :

Reduced pressure

Pr :

Prandtl number, \({Pr=\frac{\nu }{\kappa _{T}}}\)

Ra S :

Solutal Rayleigh number, \({Ra_{S}=\frac{\beta_{S} g\Delta Sd^{3}}{\nu \kappa _{T}}}\)

Ra T :

Thermal Rayleigh number, \({Ra_{T}=\frac{\beta_{T} g\Delta Td^{3}}{\nu \kappa _{T}}}\)

R 0c :

Critical Rayleigh number

S :

Solute concentration

ΔS :

Solute difference across the fluid layer

Sh :

Sherwood number

t :

Time

T :

Temperature

ΔT :

Temperature difference across the fluid layer

x, y, z :

Space Co-ordinates

β T :

Coefficient of thermal expansion

β S :

Coefficient of solute expansion

δ 2 :

Horizontal wave number k 2 c π 2

δ 1 :

Amplitude of temperature modulation

δ 2 :

Amplitude of gravity modulation

\({\epsilon}\) :

Perturbation parameter

\({\gamma }\) :

Heat capacity ratio \({\frac{(\rho c_{p})_{m}}{(\rho c_{p})_{f}}}\)

\({\kappa_{T}}\) :

Effective thermal diffusivity in horizontal direction

\({\kappa_{S}}\) :

Effective thermal diffusivity in vertical direction

μ :

Effective dynamic viscosity of the fluid

ν :

Effective kinematic viscosity, \({\left ({\frac{\mu }{\rho _{0}}}\right )}\)

\({\phi}\) :

Porosity

\({\Phi^{*}}\) :

Dimensionless amplitude of solutal perturbation

\({\phi}\) :

Solutal perturbation

\({\psi}\) :

Stream function

\({\psi}\) :

Dimensionless amplitude of stream function

ρ :

Fluid density

τ :

Slow time τ = ε 2 t

\({\Theta}\) :

Temperature perturbation

\({\Theta^{*}}\) :

Dimensionless amplitude of temperature perturbation

\({\nabla^{2}}\) :

\({\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}}\)

b :

Basic state

c :

Critical

0:

Reference value

:

Perturbed quantity

*:

Dimensionless quantity

st :

Stationary

References

  • Antohe B.V., Lage J.L.: Amplitude effect on convection induced by time-periodic horizontal heating. lnt. J. Heat Mass Transfer 39, 1121–1133 (1996)

    Article  Google Scholar 

  • Bhadauria B.S.: Thermal modulation of Rayleigh–Bénard convection in a sparsely packed porous medium. J. Porous Media 10, 175–188 (2007)

    Article  Google Scholar 

  • Bhadauria B.S.: Fluid convection in a rotating porous layer under modulated temperature on the boundaries. Trans. Porous Media 67, 297–315 (2007)

    Article  Google Scholar 

  • Bhadauria B.S.: Double diffusive convection in a porous medium with modulated temperature on the boundaries. Trans. Porous Media 70, 191–211 (2007)

    Article  Google Scholar 

  • Bhadauria B.S.: Double diffusive convection in a rotating porous layer with temperature modulation on the boundaries. J. Porous Media 10, 569–583 (2007)

    Google Scholar 

  • Bhadauria B.S., Sherani A.: Onset of Darcy-convection in a magnetic fluid-saturated porous medium subject to temperature modulation of the boundaries. Trans. Porous Media. 73, 349–368 (2008)

    Article  Google Scholar 

  • Bhadauria B.S., Sherani A.: Magnetoconvection in a porous medium subject to temperature modulation of the boundaries. Proc. Nat. Acad. Sci. India A 80, 47–58 (2010)

    Google Scholar 

  • Bhadauria B.S., Srivastava A.K.: Magneto-double diffusive convection in an electrically conducting-fluid-saturated Porous Medium with Temperature Modulation of the Boundaries. Int. J. Heat Mass Transfer 53, 2530–2538 (2010)

    Article  Google Scholar 

  • Bhadauria B.S., Suthar O.P.: Effect of thermal modulation on the onset of centrifugally driven convection in a rotating vertical porous layer placed far away from the axis of rotation. J. Porous Media 12, 221–237 (2009)

    Article  Google Scholar 

  • Caltagirone J.P.: Stabilite d’une couche poreuse horizontale soumise a des conditions aux limites periodiques. Int. J. Heat Mass Transfer 18, 815–820 (1976)

    Article  Google Scholar 

  • Chakrabarti A., Gupta A.S.: Nonlinear thermohaline convection in a rotating porous medium. Mech. Res. Commun. 8, 9–22 (1981)

    Article  Google Scholar 

  • Chhuon B., Caltagirone J.P.: Stability of a horizontal porous layer with timewise periodic boundary conditions. J. Heat Transfer 101, 244–248 (1979)

    Article  Google Scholar 

  • Govender S.: Weak non-linear analysis of convection in a gravity modulated porous layer. Trans. Porous Media 60, 33–42 (2005)

    Article  Google Scholar 

  • Govender S.: Linear stability and convection in a gravity modulated porous layer heated from below:transition from synchronous to subharmonic solutions. Trans. Porous Media 59, 227–238 (2005)

    Article  Google Scholar 

  • Griffith R.W.: Layered double-diffusive convection in porous media. J. Fluid Mech. 102, 221–248 (1981)

    Article  Google Scholar 

  • Ingham D.B., Pop I.: Transport Phenomena in porous media. Pergamon, Oxford (1998)

    Google Scholar 

  • Ingham D.B., Pop I.: Transport Phenomena in porous media. Elsevier, Oxford (2005)

    Google Scholar 

  • Kuznetsov A.V.: The onset of bioconvection in a suspension of negatively geotactic microorganisms with high-frequency vertical vibration. Int. Comm. Heat Mass Transfer 32, 1119–1127 (2005)

    Article  Google Scholar 

  • Kuznetsov A.V.: Linear stability analysis of the effect of vertical vibration on bioconvection in a horizontal porous layer of finite depth. J. Porous Media 9, 597–608 (2006)

    Article  Google Scholar 

  • Kuznetsov A.V.: Investigation of the onset of bioconvection in a suspension of oxytactic microorganisms subjected to high-frequency vertical vibration. Theor. Comp. Fluid Dyn. 20, 73–87 (2006)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium: double diffusive case. Trans. Porous Media 72, 157–170 (2008)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Trans. Porous Media 85, 941–951 (2010)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Th. Sci. 50, 712–717 (2011)

    Article  Google Scholar 

  • Malashetty M.S., Wadi V.S.: Rayleigh–Bénard convection subject to time dependent wall temperature in a fluid saturated porous layer. Fluid Dyn. Res. 24, 293–308 (1999)

    Article  Google Scholar 

  • Malashetty M.S., Basavaraja D.: Rayleigh–Bénard convection subject to time dependent wall temperature/gravity in a fluid saturated anisotropic porous medium. Heat Mass Transfer 38, 551–563 (2002)

    Article  Google Scholar 

  • Malashetty M.S., Basavaraja D.: Effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Appl. Mech. Engng. 8, 425–439 (2003)

    Google Scholar 

  • Malashetty M.S., Basavaraja D.: Effect of time-periodic boundary temperatures on the onset of double diffusive convection in a horizontal anisotropic porous layer. Int. J. Heat Mass Transfer 47, 2317–2327 (2004)

    Article  Google Scholar 

  • Malashetty M.S., Siddheshwar P.G., Swarmy M.: The effect of thermal modulation on the onset of convection in a viscoelastic fluid saturated porous layer. Trans. Porous Media 62, 55–79 (2006)

    Article  Google Scholar 

  • Malashetty M.S., Swamy M.: Combined effect of thermal modulation and rotation on the onset of stationary convection in a porous layer. Trans. Porous Media 69, 313–330 (2007)

    Article  Google Scholar 

  • Malashetty M.S., Padmavathi V.: Effect of gravity modulation on the onset of convection in a fluid and porous layer. Int. J. Eng. Sci. 35, 829–839 (1997)

    Article  Google Scholar 

  • Murray B.T., Chen C.F.: Double-diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in porous media. Springer-Verlag, New York (2006)

    Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 54, 374–378 (2011)

    Article  Google Scholar 

  • Patil P.R., Rudraiah N.: Linear convective stability and thermal diffusion of a horizontal quiescent layer of a two component fluid in a porous medium. Int. J. Eng. Sci. 18, 1055–1059 (1980)

    Article  Google Scholar 

  • Razi Y.P., Mojtabi I., Charrier-Mojtabi M.C.: A summary of new predictive high frequency thermo-vibrational modes in porous media. Trans. Porous Media 77, 207–208 (2009)

    Article  Google Scholar 

  • Rees D.A.S., Pop I.: The effect of g-jitter on vertical free convection boundary-layer flow in porous media. Int. Comm. Heat Mass Transfer 27(3), 415–424 (2000)

    Article  Google Scholar 

  • Rees D.A.S., Pop I.: The effect of g-jitter on free convection near a stagnation point in a porous medium. Int. J. Heat Mass Transfer 44, 877–883 (2001)

    Article  Google Scholar 

  • Rees D.A.S., Pop I.: The effect of large-amplitude g-jitter vertical free convection boundary-layer flow in porous media. Int. J. Heat Mass Transfer 46, 1097–1102 (2003)

    Article  Google Scholar 

  • Rudraiah N., Srimani P.K., Friedrich R.: Finite amplitude convection in a two-component fluid saturated porous layer. Heat Mass Transfer 25, 715–722 (1982)

    Article  Google Scholar 

  • Poulikakos D.: Double-diffusive convection in a horizontally sparsely packed porous layer. Int. Commun. Heat Mass Transfer 13, 587–598 (1986)

    Article  Google Scholar 

  • Rudraiah N., Malashetty M.S.: The influence of coupled molecular diffusion on double diffusive convection in a porous medium. ASME J. Heat Transfer 108, 872–876 (1986)

    Article  Google Scholar 

  • Rudraiah N., Siddheshwar P.G.: A weak nonlinear stability analysis of double diffusive convection with cross-diffusion in a fluid-saturated porous medium. Heat Mass Transfer 33, 287–293 (1998)

    Article  Google Scholar 

  • Saravanan S., Purusothaman A.: Floquent instability of a modulated Rayleigh–Benard problem in an anisotropic porous medium. Int. J. Therm. Sci. 48, 2085–2091 (2009)

    Article  Google Scholar 

  • Saravanan S., Arunkumar A.: Convective instability in a gravity modulated anisotropic thermally stable porous medium. Int. J. Eng. Sci. 48, 742–750 (2010)

    Article  Google Scholar 

  • Saravanan S., Sivakumar T.: Onset of filteration convection in a vibrating medium: the Brinkman model. Phys. Fluids 22, 034104 (2010)

    Article  Google Scholar 

  • Saravanan S., Sivakumar T.: Thermovibrational instability in a fluid saturated anisotropic porous medium. ASME J. Heat Transfer 133, 051601.1–051601.9 (2011)

    Article  Google Scholar 

  • Siddhavaram V.K., Homsy G.M.: The effects of gravity modulation on fluid mixing. Part 1. Harmonic modulation. J. Fluid Mech. 562, 445–475 (2006)

    Article  Google Scholar 

  • Strong N.: Effect of vertical modulation on the onset of filtration convection. J. Math. Fluid Mech. 10, 488–502 (2008)

    Article  Google Scholar 

  • Strong N.: Double-diffusive convection in a porous layer in the presence of vibration. SIAM J. Appl. Math. 69, 1263–1276 (2008)

    Article  Google Scholar 

  • Vafai, K. (eds): Handbook of porous media. Marcel Dekker, New York (2000)

    Google Scholar 

  • Vafai , K. (eds): Handbook of porous media. Taylor and Francis (CRC), Boca Raton (2005)

    Google Scholar 

  • Vadasz, P. (eds): Emerging topics in heat and mass transfer in porous media. Springer, New York (2008)

    Google Scholar 

  • Venezian G.: Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35, 243–254 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddheshwar, P.G., Bhadauria, B.S. & Srivastava, A. An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation. Transp Porous Med 91, 585–604 (2012). https://doi.org/10.1007/s11242-011-9861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9861-3

Keywords

Navigation