Skip to main content

Advertisement

Log in

Agrobacterium-mediated transformation and shoot regeneration in elite breeding lines of western shipper cantaloupe and honeydew melons (Cucumis melo L.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A reliable Agrobacterium-mediated transformation and shoot regeneration protocol was developed for breeding lines of commercially important western-shipper cantaloupe and honeydew melons, ‘F39’ and ‘150’, respectively. Different media were tested to select a shoot regeneration system for each of three elite breeding lines ‘F39’, ‘141’ and ‘TMS’. Murashige & Skoog (MS) basal medium supplemented with 1 mg l−1 benzyladenine (BA), 0.26 mg l−1 abscisic acid (ABA) and 0.8 mg l−1 indole-3-acetic acid (IAA) was used for shoot regeneration from cotyledonary explants in ‘F39’ and ‘150’. Kanamycin sensitivity as well as Timentin and Clavamox® were evaluated using wild-type ‘F39’ and ‘150’ cotyledons. Kanamycin concentrations of 200 and 150 mg l−1 were chosen as the threshold levels for ‘F39’ and ‘150’, respectively. No significant differences were found between Timentin and Clavamox® in ‘F39’; however, Clavamox® reduced the incidence of vitrification and increased the frequency of shoot elongation in ‘150’. A. tumefaciens strain EHA105, harboring pCNL56 carrying neomycin phosphotransferase II (nptII) and gusA reporter genes, was selected to establish a transformation protocol for ‘F39’ and ‘150’. Putative transformants were evaluated using β-glucuronidase (GUS) histochemical assay, polymerase chain reaction (PCR) and Southern blot analyses. Based on these parameters, the transformation efficiency for cantaloupe ‘F39’ was 0.3% and that for honeydew ‘150’ was 0.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

IAA:

Indole-3-acetic acid

ABA:

Abscisic acid

nptII :

Neomycin phosphotransferase II

GUS:

β-glucuronidase

MS:

Murashige and Skoog

PCR:

Polymerase chain reaction

References

  • Afroz A, Chaudhry Z, Rashid U, Ali GM, Nazir F, Iqbal J, Khan MR (2010) Enhanced resistance against bacterial wilt in transgenic tomato (Lycopersicon esculentum) lines expressing the Xa21 gene. Plant Cell Tissue Organ Cult 104:227–237

    Article  Google Scholar 

  • Akasaka-Kennedy Y, Tomita K, Ezura H (2004) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci 166:763–769

    Article  CAS  Google Scholar 

  • Ayub R, Guis M, Amor MB, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    Article  PubMed  CAS  Google Scholar 

  • Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Trans Res 6:41–50

    Article  CAS  Google Scholar 

  • Castelblanque L, Marfa V, Claveria E, Martinez I, Perez-Grau L, Dolcet-Sanjuan R (2008) Improving the genetic transformation efficiency of Cucumis melo subsp. melo ‘Piel de Sapo’ via Agrobacterium. Cucurbitaceae 2008. In: Pitrat M (ed) Proc IXth EUCARPIA Mtg on Gene and Breed of Cucurbitaceae, INRA, Avignon, France, 21–24 May 2008, pp 627–631

  • Cheng ZM, Schnurr JA, Kapaun JA (1998) Timentin as an alternative antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Plant Cell Rep 17:646–649

    Article  CAS  Google Scholar 

  • Chovelon V, Restier V, Dogimont C, Aarrouf J (2008) Histological study of shoot organogenesis in melon (Cucumis melo L.) after genetic transformation. Cucurbitaceae 2008. In: Pitrat M (ed) Proc IXth EUCARPIA mtg on Gene and Breed of Cucurbitaceae, INRA, Avignon, France, 21–24 May 2008, pp 633–637

  • Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic-virus in squash and cantaloupe. Plant Dis 79:1107–1109

    Article  CAS  Google Scholar 

  • Compton ME, Gray DJ, Gaba VP (2004) Genetic transformation of watermelon. In: Curtis IS (ed) Transgenic crops of the world-essential protocols. Kluwer Academic Publishers, Dordrecht, pp 425–433

    Google Scholar 

  • Costa MS, Miguel C, Oliveira MM (2006) An improved selection strategy and the use of acetosyringone in shoot induction medium increase almond transformation efficiency by 100-fold. Plant Cell Tissue Organ Cult 85:205–209

    Article  Google Scholar 

  • Dan Y, Charles L, Armstrong Dong J, Feng X, Fry JE, Keithly GE, Martinell BJ, Roberts GA, Smith LA, Tan LJ, Duncan DR (2009) Lipoic acid—a unique plant transformation enhancer. In Vitro Cell Dev Biol Plant 45:630–638

    Article  CAS  Google Scholar 

  • Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus-35 s promoter in transgenic melon plants. Biotechnology 9:858–863

    Article  CAS  Google Scholar 

  • Dutt M, Vasconcellos M, Grosser JW (2011) Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell Tissue Organ Cult Online First, 6 May 2011

  • Fan JD, He QW, Wang XF, Yu XY (2007) Antisense acid Invertase (anti-MAI1) gene alters soluble sugar composition and size in transgenic muskmelon fruits. Acta Hort Sinica 34:677–682

    CAS  Google Scholar 

  • Fang G, Grumet R (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

    Article  CAS  Google Scholar 

  • Ficcadenti N, Rotino GL (1995) Genotype and medium affect shoot regeneration of melon. Plant Cell Tissue Organ Cult 40:293–295

    Article  CAS  Google Scholar 

  • Fuchs M, McFerson JR, Tricoli DM, McMaster JR, Deng RZ, Boeshore ML, Reynolds JF, Russell PF, Quemada HD, Gonsalves D (1997) Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol Breed 3:279–290

    Article  Google Scholar 

  • Fullner KJ, Nester EW (1996) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504

    PubMed  CAS  Google Scholar 

  • Gaba V, Elman C, Watad AA, Gray DJ (1996) Ancymidol hastens in vitro bud development in melon. HortScience 31:1223–1224

    CAS  Google Scholar 

  • Galperin M, Patlis L, Ovadia A, Wolf D, Zelcer A, Kenigsbuch D (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breed 122:66–69

    Article  Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling KS, Namba S, Chee P, Slightom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Am Soc Hort Sci 119:345–355

    CAS  Google Scholar 

  • Gould JH, Magallens-Cedeno M (1998) Adaptation of cotton shoot apex culture to Agrobacterium-mediated transformation. Plant Mol Biol Rep 16:1–10

    Article  Google Scholar 

  • Gray DJ, McColley DW, Compton ME (1993) High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J Am Soc Hort Sci 118:425–432

    Google Scholar 

  • Guis M, Latché A, Pech JC, Roustan JP (1997) An efficient method for production of diploid cantaloupe charentais melon (Cumcumis melo L. var cantalupensis) by somatic embryogenesis. Scientia Hort 69:199–206

    Article  Google Scholar 

  • Guis M, Amor MB, Latché A, Pech JC, Roustan JP (2000) A reliable system for the transformation of cantaloupe charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Scientia Hort 84:91–99

    Article  CAS  Google Scholar 

  • Hao J, Niu Y, Yang B, Gao F, Zhang L, Wang J, Hasi A (2011) Transformation of a marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube pathway. Biotechnol Lett 33:55–61

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plant. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hussain AF, Anfoka GH, Hassawi DS (2008) Transformation of tomato with TYLCV gene silencing construct using optimized Agrobacterium-mediated protocol. Biotechnology 7:537–543

    Article  CAS  Google Scholar 

  • Ieamkhang S, Chatchawankanphanich O (2005) Augmentin® as an alternative antibiotic for growth suppression of Agrobacterium for tomato (Lycopersicon esculentum) transformation. Plant Cell Tissue Organ Cult 82:213–220

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuonidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 13:3901–3907

    Google Scholar 

  • Kathiravan K, Vengedesan G, Singer S, Steinitz B, Paris HS, Gaba V (2006) Adventitious regeneration in vitro occurs across a wide spectrum of squash (Cucurbita pepo) genotypes. Plant Cell Tissue Organ Cult 85:285–295

    Article  Google Scholar 

  • Keng CL, Hoong LK (2005) In vitro plantlets regeneration from nodal segments of muskmelon (Cucumis melo L.). Biotechnology 4:354–357

    Article  CAS  Google Scholar 

  • Kintzios SE, Taravira N (1997) Effect of genotype and light intensity on somatic embryogenesis and plant regeneration in melon (Cucumis melo L.). Plant Breed 116:359–362

    Article  CAS  Google Scholar 

  • Kintzios S, Stavropoulou Er, Skamneli S (2004) Accumulation of selected macronutrients and carbohydrates in melon tissue cultures: association with pathways of in vitro dedifferentiation and differentiation (organogenesis, somatic embryogenesis). Plant Sci 167:655–664

    Article  CAS  Google Scholar 

  • Kumar V, Campbell LM, Rathore KS (2011) Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell Tissue Organ Cult 104:137–146

    Article  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Li X, Liu C, Ritchie SW, Peng J, Gelvin SB, Hodges TK (1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol Biol 20:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Mollel MHN, Goyvaerts EMA (2004) Preliminary examination of factors affecting Agrobacterium tumefaciens-mediated transformation of marula, Sclerocarya birrea subsp. caffra (Anacardiaceae). Plant Cell Tissue Organ Cult 79:321–328

    Article  CAS  Google Scholar 

  • Moore GA (1995) Phenotypic stability of transgenic citrus. HortScience 30:903–904 (Abstract)

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa H, Saijyo T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Scientia Horti 90:85–92

    Article  CAS  Google Scholar 

  • Nuňez-Palenius HG, Cantliffe DJ, Huber DJ, Ciardi J, Klee HJ (2006) Transformation of a muskmelon ‘Galia’ hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an antisense ACC oxidase gene. Plant Cell Rep 25:198–205

    Article  PubMed  Google Scholar 

  • Nuňez-Palenius HG, Grumet R, Lester G, Cantliffe D (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    Article  PubMed  Google Scholar 

  • Olhoft PM, Somer DA (2001) l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Oridate T, Oosawa K (1986) Somatic embryogenesis and plant regeneration from suspension callus culture in melon. Jpn J Breed 36:424–428

    Google Scholar 

  • Oridate T, Atsumi H, Ito S, Araki H (1992) Genetic differences in somatic embryogenesis from seeds in melon (Cucumis melo L.). Plant Cell Tissue Organ Cult 29:27–30

    Article  Google Scholar 

  • Orts MC, Garciasogo B, Roche MV, Roig LA, Moreno V (1987) Morphogenetic response of calli derived from primary explants of diverse cultivars of melon. HortScience 22:666

    Google Scholar 

  • Ostergaard L, Yanofsky M (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696

    Article  PubMed  CAS  Google Scholar 

  • Seo MS, Takahashi S, Kadowaki K, Kawamukai M, Takahara M, Takamizo T (2011) Expression of CoQ10-producing ddsA transgene by efficient Agrobacterium-mediated transformation in Panicum meyerianum. Plant Cell Tissue Organ Cult Online First 10 June 2011

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tissue Organ Cult 105:93–104

    Article  CAS  Google Scholar 

  • Shilpa KS, Kumar VD, Sujatha M (2010) Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.). Plant Cell Tissue Organ Cult 103:387–401

    Article  CAS  Google Scholar 

  • Skroch PW, Nienhuis J (1995) Qualitative and quantitative characterization of RAPD variation among snap bean genotypes. Theor Appl Genet 91:1078–1085

    CAS  Google Scholar 

  • Slater SMH, KellerWA, Scoles G (2011) Agrobacterium-mediated transformation of Eruca sativa. Plant Cell Tissue Organ Cult Online First 5 January 2011

  • Souza FVD, Garcia-Sogo B, da Silva Souza A, San-Juán P, Moreno V (2006) Morphogenetic response of cotyledon and leaf explants of melon (Cucumis melo L.) cv. Amarillo Oro. Braz Arch Biol Technol 49:21–27

    Article  Google Scholar 

  • Thiruvengadam M, Hsu W, Yang C (2011) Phosphomannose-isomerase as a selectable marker to recover transgenic orchid plants (Oncidium Gower Ramsey). Plant Cell Tissue Organ Cult 104:239–246

    Article  CAS  Google Scholar 

  • Toldi O, Tóth S, Pónyi T, Scott P (2002) An effective and reproducible transformation protocol for the model resurrection plant Craterostigma plantagineum Hochst. Plant Cell Rep 211:63–69

    Google Scholar 

  • Vallés MP, Lasa JM (1994) Agrobacterium-mediated transformation of commercial melon (Cucumis melo L. cv. Amarillo Oro). Plant Cell Rep 13:145–148

    Article  Google Scholar 

  • Wu HW, Yu TA, Raja JAJ, Wang HC, Yeh SD (2009) Generation of transgenic oriental melon resistant to Zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Rep 28:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Yadav RC, Saleh MT, Grumet R (1996) High frequency shoot regeneration from leaf explants of muskmelon. Plant Cell Tissue Organ Cult 45:207–214

    Article  CAS  Google Scholar 

  • Yasmin A, Debener T (2010) Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tissue Organ Cult 102:245–250

    Article  CAS  Google Scholar 

  • Zambre M, Terryn N, De Clercq J, De Buck S, Dillen W, Van Montagu M, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216:580–586

    PubMed  CAS  Google Scholar 

  • Zheng Q, Ju B, Liang L, Xiao X (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 811:83–89

    Google Scholar 

Download references

Acknowledgments

This research was supported by an USDA-CSREES Special Grant “Designing Foods for Health” (2006-34402-17121, 2008-34402-19195 and 2009-34402-19831) through the Vegetable and Fruit Improvement Center, Texas A&M University. We wish to thank Drs. Rebecca Grumet, Keerti Rathore, Sung Hun Park, Sylvain Marcel, Selvakumar Veluchamy, Mehdi Kabbage, Ms. Marianne Arnold, Sue Hammar, and Jungeun Kim for technical advice and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Crosby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Bang, H., Curtis, I.S. et al. Agrobacterium-mediated transformation and shoot regeneration in elite breeding lines of western shipper cantaloupe and honeydew melons (Cucumis melo L.). Plant Cell Tiss Organ Cult 108, 147–158 (2012). https://doi.org/10.1007/s11240-011-0024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0024-6

Keywords

Navigation