Skip to main content
Log in

Molecular structure, conformational stability, energetic and intramolecular hydrogen bonding in ground, and electronic excited state of 3-mercapto propeneselenal

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present work, a conformational analysis of 3-mercapto propeneselenal is performed using several computational methods, including DFT (B3LYP), MP2, and G2MP2. At the DFT and G2MP2 levels the most stable conformers of title compound are characterized by an extended backbone structure, minimizing the steric repulsions between the sulfur and selenium lone pairs. Two conformers exhibit hydrogen bonding. This feature, although not being the dominant factor in energetic terms, appears to be of foremost importance to define the geometry of the molecule. The influence of the solvent on the stability order of conformers and the strength of intramolecular hydrogen bonding was considered using the PCM, SCI–PCM, and IEF–PCM methods. The results of analysis by quantum theory of “Atoms in Molecules” and natural bond orbital method fairly support the DFT results. The calculated HOMO and LUMO energies showed that charge transfer occurs within the molecule. Further verification of the obtained transition state structures was implemented via intrinsic reaction coordinate analysis. Calculations of the 1H NMR chemical shift at GIAO/B3LYP/6–311++G** levels of theory are also presented. The excited-state properties of intramolecular hydrogen bonding in hydrogen-bonded systems have been investigated theoretically using the time-dependent density functional theory method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Srivastava PC, Robins RK (1983) J Med Chem 26:445–448

    Article  CAS  Google Scholar 

  2. Wu W, Murakami K, Koketsu M, Yamada Y, Saiki I (1999) Anticancer Res 19:5375–5382

    CAS  Google Scholar 

  3. May SW (2002) Exp Opin Invest Drugs 11:1261–1269

    Article  CAS  Google Scholar 

  4. Parnham MJ, Graf E (1991) Prog Drug Res 36:9–47

    CAS  Google Scholar 

  5. Koketsu M, Ishihara H, Hatsu M (1998) Res Commun Mol Pathol Pharmacol 101:179–186

    CAS  Google Scholar 

  6. May SW, Wang L, Gill-Woznichak MM, Browner RF, Ogonowski AA, Smith JB, Pollock SH (1997) J Pharm Exp Ther 283:470–477

    CAS  Google Scholar 

  7. Lamberth C (2004) J Sulfur Chem 25:39–62

    Article  CAS  Google Scholar 

  8. Sharath N, Bhojya Naik Halehatty S, Vinay Kumar B, Hoskeri J (2011) Br J Pharm Res 1:46–65

    Article  Google Scholar 

  9. Raissi H, Yoosefian M (2012) Int J Quant Chem 112:2378–2381

    Article  CAS  Google Scholar 

  10. Gonzalez L, Mo O, Yanez M (1997) J Phys Chem A 101:9710–9719

    Article  CAS  Google Scholar 

  11. Jeffery GA, Sanger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  12. Li GY, Zhao GJ, Liu YH, Han KL, He GZ (2010) J Comput Chem 31:1759–1765

    Article  Google Scholar 

  13. Zhao GJ, Chen RK, Sun MT, Li GY, Liu JY, Gao YL, Han KL, Yang XC, Sun LC (2008) Chem Eur J 14:6935–6947

    Article  CAS  Google Scholar 

  14. Zhou LC, Zhao GJ, Liu JF, Han KL, Wu YK, Peng XJ, Sun MT (2007) J Photochem Photobiol A 187:305–310

    Article  CAS  Google Scholar 

  15. Zhao GJ, Liu JY, Zhou LC, Han KL (2007) J Phys Chem B 111:8940–8945

    Article  CAS  Google Scholar 

  16. Kearley GJ, Fillaux F, Baron MH, Bennington S, Tomkinson J (1994) Science 264:1285–1289

    Article  CAS  Google Scholar 

  17. Zhang H, Wang SF, Sun Q, Smith SC (2009) Phys Chem Chem Phys 11:8422–8424

    Article  CAS  Google Scholar 

  18. Han J, Meng JB (2009) J Photochem Photobiol C 10:141–147

    Article  CAS  Google Scholar 

  19. Priyadarsini KI (2009) J Photochem Photobiol C 10:81–95

    Article  CAS  Google Scholar 

  20. Horikoshi S, Serpone N (2009) J Photochem Photobiol C 10:96–110

    Article  CAS  Google Scholar 

  21. Zhao GJ, Han KL (2007) J Phys Chem A 111:9218–9223

    Article  CAS  Google Scholar 

  22. Raissi H, Yoosefian M, Zamani S, Farzad F (2012) J Sulfur Chem 33:75–85

    Article  CAS  Google Scholar 

  23. Rutkowski K, Koll A (1994) J Mol Struct 322:195–203

    Article  CAS  Google Scholar 

  24. Raissi H, Jalbout AF, Nasseri MA, Yoosefian M, Ghiassi H, Hameed A (2008) Int J Quant Chem 108:1444–1451

    Article  CAS  Google Scholar 

  25. Simperler A, Mikenda (1997) Monatsh Chem 128:969–980

    Article  CAS  Google Scholar 

  26. Raissi H, Yoosefian M, Mollania F (2012) Int J Quant Chem 112:2782–2786

    Article  CAS  Google Scholar 

  27. Chung G, Kwon O, Kwon Y (1998) J Phys Chem A 102:2381–2387

    Article  CAS  Google Scholar 

  28. Koll A (1983) Bull Soc Chim Belg 92:313–328

    Article  CAS  Google Scholar 

  29. Raissi H, Yoosefian M, Mollania F, Farzad F, Nowroozi AR, Loghmaninejad D (2011) J Comput Theor Chem 966:299–305

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 revision C 02 (or D 01). Gaussian Inc, Pittsburgh

    Google Scholar 

  31. Becke AD (1993) J Phys Chem 98:5648–5652

    Article  CAS  Google Scholar 

  32. Moller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  CAS  Google Scholar 

  33. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  34. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  35. Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153–2156

    Article  CAS  Google Scholar 

  36. Biegler-König F (2000) AIM2000 version 10. University of Applied Science, Bielefeld

    Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold FA (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  38. Wendt M, Weinhold F (2001) NBOView 1.0 Theoretical Chemistry Institute. University of Wisconsin, Madison

    Google Scholar 

  39. Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117–129

    CAS  Google Scholar 

  40. Tomasi J, Mennucci B, Canc_es E (1999) J Mol Struct Theo Chem 464:211–226

    Article  CAS  Google Scholar 

  41. Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098–16104

    Article  CAS  Google Scholar 

  42. Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 36:3839–3842

    Article  Google Scholar 

  43. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  44. Bader RF, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968

    Article  CAS  Google Scholar 

  45. Valdes H, Reha D, Hobza P (2006) J Phys Chem B 110:6385–6396

    Article  CAS  Google Scholar 

  46. Shuster P, Zundel G, Sandorfy C (1976) The hydrogen bond. North Holland, Amsterdam

    Google Scholar 

  47. Espinosa E, Molins E (2000) J Chem Phys 113:5686–5694

    Article  CAS  Google Scholar 

  48. Durig JR, Little TS, Gounev TK, Gardner JK, Sullivan JF (1996) J Mol Struct 375:83–94

    CAS  Google Scholar 

  49. Liu JN, Chen ZR, Yuan SF (2005) J Zhejiang Univ Sci B 6:584–589

    Article  Google Scholar 

  50. Sajan D, Lakshmi KU, Erdogdu Y, Joe IH (2011) Spectrochim Acta A 78:113–121

    Article  CAS  Google Scholar 

  51. Ibrahim M, Mahmoud AA (2009) J Comput Theor Nanosci 6:1523–1526

    Article  CAS  Google Scholar 

  52. Gilli G, Belluci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  53. Koopmans TA (1933) Physics 1:104–113

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Shokhmkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokhmkar, M., Raissi, H. & Mollania, F. Molecular structure, conformational stability, energetic and intramolecular hydrogen bonding in ground, and electronic excited state of 3-mercapto propeneselenal. Struct Chem 25, 1153–1164 (2014). https://doi.org/10.1007/s11224-013-0381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0381-3

Keywords

Navigation