Skip to main content
Log in

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

ChemCam is a remote sensing instrument suite on board the “Curiosity” rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (∼90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 8
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66

Similar content being viewed by others

Abbreviations

ADC:

Analog-to-Digital Converter

APXS:

Alpha Proton X-ray Spectrometer

AZ:

Azimuth (ref. Mast pointing direction)

BU:

Body-Unit

CCCT:

ChemCam Calibration Targets

CTF:

Contrast Transfer Function

CW:

Continuous Wavelength (laser)

DOF:

Depth of Field

DPU:

Digital Processing Unit

EBOX:

Electronics Box

EL:

Elevation (ref. Mast Pointing direction)

FOV:

Field of View

FPGA:

Field Programmable Gate Array

GSE:

Ground Support Equipment

LIBS:

Laser Induced Breakdown Spectroscopy

MER:

Mars Exploration Rovers

MSL:

Mars Science Laboratory

MTF:

Modulation Transfer Function

MU:

Mast-Unit

OBOX:

Optical Box

R:

Distance to target

RCE:

Rover Compute Element (∼ rover DPU)

RMI:

Remote micro-imager

ROI:

Region of Interest

RWEB:

Remote Warm Electronics Box

References

  • R.B. Anderson, J.F. Bell, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76–128 (2010)

    Article  ADS  Google Scholar 

  • Z.A. Arp, D.A. Cremers, R.C. Wiens, D.M. Wayne, B. Salle, S. Maurice, Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration. Appl. Spectrosc. 58, 897–909 (2004)

    Article  ADS  Google Scholar 

  • R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Dover, London, 1941), 320 pages

    Google Scholar 

  • J.L. Bandfield, V.E. Hamilton, P.R. Christensen, H.Y. McSween, Identification of quartzofeldspathic materials on Mars. J. Geophys. Res. 109, E10009 (2004)

    Article  ADS  Google Scholar 

  • D. Baratoux, M. Toplis, M. Monnereau, O. Gasnault, Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 475, 254 (2011)

    Article  ADS  Google Scholar 

  • G. Berger, M. Toplis, E. Treguier, C. d’Uston, P. Pinet, Evidence in favor of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009)

    Article  ADS  Google Scholar 

  • J.P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget (The OMEGA Team), Global mineralogical and aqueous Mars history derived from the OMEGA/Mars express data. Science 312, 400–404 (2006)

    Article  ADS  Google Scholar 

  • J.-P. Bibring, P. Lamy, Y. Langevin, A. Soufflot, M. Berthé, J. Borg, F. Poulet, S. Motola, CIVA, Space Science Reviews 128 (2007)

  • J.D. Blacic, D.R. Petit, D.A. Cremers, N. Roessler, Laser-induced breakdown spectroscopy for remote elemental analysis of planetary surfaces. Proc. Int. Symp. Spectral Sens. (1992), pp. 302–312

    Google Scholar 

  • W.V. Boynton, W.C. Feldman, S.W. Squyres et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85 (2002)

    Article  ADS  Google Scholar 

  • J. Brückner, G. Dreibus, R. Rieder, H. Wänke, Refined data of APXS analyses of soils and rocks at the Mars pathfinder site: implications for surface chemistry. J. Geophys. Res. 108, E8094 (2003)

    Article  ADS  Google Scholar 

  • B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186, 60–96 (2007)

    Article  ADS  Google Scholar 

  • M.H. Carr, Water on Mars (Oxford Univ. Press, New York, 1996), 229 pages

    Google Scholar 

  • M. Carr, J.W. Head, Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010)

    Article  ADS  Google Scholar 

  • S.M. Clegg, R.C. Wiens, J.E. Barefield, E. Sklute, M.D. Dyar, Quantitative remote laser induced breakdown spectroscopy by multivariate analysis. Spectrochim. Acta B 64, 79–88 (2009)

    Article  ADS  Google Scholar 

  • M. Coche, T. Berthoud, P. Mauchien, P. Camus, Laser-enhanced ionization in a laser produced plasma at atmospheric pressure: theoretical and experimental considerations. Appl. Spectrosc. 43, 646–650 (1989)

    Article  ADS  Google Scholar 

  • A. Cousin, S. Maurice, Y. Parot, Y. Michel, N. Le Roch, J. Dalmau, L. Parès, R. Pérez, A. Cros, R.C. Wiens (The ChemCam Team), ChemCam (MSL) autofocus capabilities. Lunar Planet. Sci. XL, 1684 (2009)

    ADS  Google Scholar 

  • A. Cousin, O. Forni, S. Maurice, O. Gasnault, C. Fabre, V. Sautter, R.C. Wiens, J. Mazoyer, Laser induced breakdown spectroscopy library for the Martian environment. Spectrochim. Acta B (2011). doi:10.1016/j.sab.2011.10.004

    MATH  Google Scholar 

  • D.A. Cremers, L.J. Radziemski, Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy. Anal. Chem. 55, 1252–1256 (1983)

    Article  Google Scholar 

  • D.A. Cremers, L.J. Radziemski, Laser plasmas for chemical analysis, in Laser Spectroscopy and Its Applications, ed. by L.J. Radziemski, R.W. Solarz, J.A. Paisner (Marcel Dekker, New York, 1987) Chapter 5

    Google Scholar 

  • C. Dufour, N. Le Roch, M. Berthé, Y. Langevin, R. Perez, S. Saccoccio, O. Forni, S. Maurice, Determination of the first level image processing of the ChemCam instrument for the Mars Science Laboratory. ICSO (2010)

  • E. Durand, C. Derycke, C. Simon-Boisson, S. Muller, B. Faure, M. Saccoccio, S. Maurice, Conduction cooled compact laser for ChemCam instrument. ICSO (2006)

  • C. Fabre, S. Maurice, A. Cousin, R.C. Wiens, O. Forni, V. Sautter, D. Guillaume, Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument. Spectrochim. Acta Part B 66, 280–289 (2011)

    Article  ADS  Google Scholar 

  • B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, D. Bruneau, Development of a Compact Laser for ChemCam Instrument and Potential Use for Wind Measurement on Mars (SPIE Remote Sensing, Berlin, 2009)

    Google Scholar 

  • F. El-Baz, D. Prestel, Desert Varnish on Sand Grains from the Western Desert of Egypt: Importance of the Clay Component and Implications to Mars. LUNAR AND PLANETARY SCIENCE XI, 254–256 (1980)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005)

    Article  ADS  Google Scholar 

  • W.C. Feldman, W.V. Boynton, R.L. Tokar, T.H. Prettyman, O. Gasnault, S.W. Squyres, R.C. Elphic, D.J. Lawrence, S.L. Lawson, S. Maurice, G.W. McKinney, K.R. Moore, R.C. Reedy, Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297, 75–78 (2002)

    Article  ADS  Google Scholar 

  • W.C. Feldman, M.T. Mellon, S. Maurice, T.H. Prettyman, J.W. Carey, D.T. Vaniman, D.L. Bish, C.I. Fialips, S.J. Chipera, J.S. Kargel, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophys. Res. Lett. 31, L16702 (2004)

    Article  ADS  Google Scholar 

  • J. Flahaut, J.F. Mustard, C. Quantin, H. Clenet, P. Allemand, P. Thomas, Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris. Geophys. Res. Lett. 38, L15202 (2011)

    Article  ADS  Google Scholar 

  • F. Forget, R.M. Haberle, F. Montmessin, B. Levrard, J.W. Head, Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006)

    Article  ADS  Google Scholar 

  • O. Gasnault, J.G. Taylor, S. Karunatillake, J. Dohm, H. Newsom, O. Forni, P. Pinet, W.V. Boynton, Quantitative geochemical mapping of martian elemental provinces. Icarus 207, 226–247 (2010)

    Article  ADS  Google Scholar 

  • R. Gellert, R. Rieder, R.C. Anderson, J. Bruckner, B.C. Clark, G. Dreibus, T. Economou, G. Klingelhofer, G.W. Lugmair, D.W. Ming, S.W. Squyres, C. d’Uston, H. Wanke, A. Yen, J. Zipfel, Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray spectrometer. Science 305, 829–832 (2004)

    Article  ADS  Google Scholar 

  • R. Greeley, J.D. Iversen, Wind as a Geological Process: On Earth, Mars, Venus, and Titan (Cambridge University Press, Cambridge, 1985), 333 pages

    Book  Google Scholar 

  • J. Grotzinger, D. Beaty, G. Dromart, S. Gupta, M. Harris, J. Hurowitz, G. Kocurek, S. Mclennan, R. Milliken, G. Ori, Sumner D. Mars, Sedimentary Geology: key concepts and outstanding questions. Astrobiology 11(1), 77–87 (2011)

    Article  ADS  Google Scholar 

  • E.A. Guinness, R.E. Arvidson, I.H.D. Clark, M.K. Shepard, Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites. J. Geophys. Res. 102(E12), 28687–28704 (1997)

    Article  ADS  Google Scholar 

  • R.L. Huguenin, K.J. Miller, W.S. Harwood, Frost weathering on Mars: experimental evidence for peroxide formation. J. Mol. Evol. 14, 57–64 (1979)

    Article  Google Scholar 

  • J. Lasue, R. Wiens, T. Stepinski, O. Forni, S. Clegg, S. Maurice (The ChemCam Team), Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data. Anal. Bioanal. Chem. 1–14 (2011)

  • N. Le Roch, J. Dalmau, L. Pares, H. Valentin, K. Gasc, B. Faure, C. Dufour, Y. Parot, A. Paillet, J. Sanisidro, R. Pérez, M. Saccoccio, A. Cousin, A. Cros, S. Maurice, ChemCam on the next NASA mission to Mars (MSL 2011): Measured performances of the high power LIBS laser beam. ICSO (2010)

  • N. Mangold, V. Ansan, Ph. Mason, C. Vincendon, Estimate of Aeolian thickness in Arabia Terra, Mars: Implications of a thick mantle (>20 m) for hydrogen detection. Géomorphologie 1, 23–32 (2009)

    Article  Google Scholar 

  • S. Maurice, R. Wiens, L. Parès, S. Bender, N. le Roch, J. Dalmau, M. Berthé, Y. Langevin, K. Herkenhoff, N. Bridges, Characterization of ChemCam (MSL) imaging capability. Lunar Planet. Sci. XL, 1864 (2009)

    ADS  Google Scholar 

  • S. Maurice, W.C. Feldman, B. Diez, O. Gasnault, D.J. Lawrence, A. Pathare, T. Prettyman, Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. J. Geophys. Res. 116, E011008 (2011)

    Article  Google Scholar 

  • S. Maurice, A. Cousin, R.C. Wiens, O. Gasnault, L. Parès, O. Forni, P.-Y. Meslin, S. Clegg (The ChemCam Team), Laser Induced Breakdown Spectroscopy (LIBS) spot size at stand-off distances with ChemCam. Lunar Planet. Sci. XLIII, 1659 (2012)

    Google Scholar 

  • H.Y. McSween, S.W. Ruff, R.V. Morris, J.F. Bell, K. Herkenhoff, R. Gellert, K.R. Stockstill, L.L. Tornabene, S.W. Squyres, J.A. Crisp, P.R. Christensen, T. McCoy, D.W. Mittlefehldt, M. Schmidt, Alkaline volcanic rocks from the Columbia Hills, Gusev crater. Mars. J. Geophys. Res. 111, E09S91 (2006)

    Article  ADS  Google Scholar 

  • H.Y. McSween, I.O. McGlynn, A.D. Rogers, Determining the modal mineralogy of Martian soils. J. Geophys. Res. 115, E00F12 (2010)

    Article  ADS  Google Scholar 

  • Y. Michel, E. Condé, D. Kouach, M. Simpfenderfer, Y. Parot, G. Orttner, M. Saccoccio, S. Maurice, ChemCam screw/nut Autofocus Mechanism: Qualification Data and Guidelines for Space-Use of Ground Equipments (ESMATS, Vienna, 2009)

    Google Scholar 

  • R.E. Milliken, G.A. Swayze, R.E. Arvidson, J.L. Bishop, R.N. Clark, B.L. Ehlmann, R.O. Green, J.P. Grotzinger, R.V. Morris, S.L. Murchie, J.F. Mustard, C. Weitz, Opaline silica in young deposits on Mars. Geology 36(11), 847–850 (2008)

    Article  ADS  Google Scholar 

  • D.W. Ming, D.W. Mittlefehldt, R.V. Morris, D.C. Golden, R. Gellert, A. Yen, B.C. Clark, S.W. Squyres, W.H. Farrand, S.W. Ruff, R.E. Arvidson, G. Klingelhofer, H.Y. McSween, D.S. Rodionov, C. Schroder, P.A. de Souza, A. Wang, Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater. Mars. J. Geophys. Res. 111, E02S12 (2006)

    Article  ADS  Google Scholar 

  • S. Murchie, L. Roach, F. Seelos, R. Milliken, J. Mustard, R. Arvidson, S. Wiseman, K. Lichtenberg, J. Andrews-Hann, J. Bishop, J.-P. Bibring, M. Parente, R. Morris, Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. 114, E12 (2009)

    Google Scholar 

  • A.M. Ollila, J.G. Blank, R.C. Wiens, J. Lasue, H.E. Newsom, S.M. Clegg, A. Cousin, S. Maurice, Preliminary results on the capabilities of the ChemCam laser-induced breakdown spectroscopy (LIBS) instrument to detect carbon on Mars. Lunar Planet. Sci. XLII, 2395 (2011)

    ADS  Google Scholar 

  • R. Pérez, B.L. Barraclough, S.C. Bender, A. Cousin, A. Cros, L. DeFlores, N. LeRoch, S. Maurice, A. Paillet, L. Pares, Y. Parot, M. Saccoccio, R.C. Wiens, The ChemCam instrument for the 2011 Mars science laboratory mission : system requirements and performances. IPPW (2011)

  • F. Poulet, N. Mangold, B. Platevoet, J.-M. Bardintzeff, V. Sautter, J.F. Mustard, J.-P. Bibring, P. Pinet, Y. Langevin, B. Gondet, A. Aléon-Toppani, Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological implications. Icarus 201, 84–101 (2009)

    Article  ADS  Google Scholar 

  • H.G. Reading, Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd edn. (Blackwell Science, Boston, 1996), 688 pages

    Google Scholar 

  • N.O. Rennó, B.J. Bos, D. Catling, B.C. Clark, L. Drube, D. Fisher, W. Goetz, S.F. Hviid, H.U. Keller, J.F. Kok, S.P. Kounaves, K. Leer, M. Lemmon, M.B. Madsen, W.J. Markiewicz, J. Marshall, C. McKay, M. Mehta, M. Smith, M.P. Zorzano, P.H. Smith, C. Stoker, S.M.M. Young, Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res. 114, E00E03 (2009)

    Article  Google Scholar 

  • L.H. Roach, J.F. Mustard, S.L. Murchie, J.-P. Bibring, F. Forget, K.W. Lewis, O. Aharonson, M. Vincendon, J.L. Bishop, Testing evidence of recent hydration state change in sulfates on Mars. J. Geophys. Res. 114, E00D02 (2009)

    Article  ADS  Google Scholar 

  • S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107 (2002)

  • M. Saccoccio, S. Maurice, R. Wiens, B. Barraclough, J. Bernardin, A. Cros, S. Bender, S. Clegg, L. Parès, K. Gasc, D. Kouach, B. Dubois, M. Bouye, J. Thocaven, H. Seran, Y. Parot, G. Orttner, B. Faure, Y. Michel, P. Cai’s, M. Berthe, R. Perez, R. Stiglich, D. Landis, T. Hale, D. Blaney, C. Hayes, C. Lindensmith, T. Elliott, ChemCam on MSL 2009: first laser-induced breakdown spectrometer for space science. ICSO (2008)

  • B. Sallé, P. Mauchien, S. Maurice, Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim. Acta B 62(8), 739–768 (2007)

    Article  ADS  Google Scholar 

  • J.W. Schopf, Paleobiology of the Archean. in The Proterozoic Biosphere, a Multidisciplinary Study, ed. by J.W. Schopf, C. Klein (CUP, New-York, 1992), pp. 25–39

    Chapter  Google Scholar 

  • C. Schröder, D.S. Rodionov, T. McCoy, B.L. Jolliff, R. Gellert, L.R. Nittler, W.H. Farrand, J.R. Johnson, S.W. Ruff, J.W. Ashley, D.W. Mittlefehldt, K.E. Herkenhoff, I. Fleischer, A.F.C. Haldemann, G. Klingelhöfer, D.W. Ming, R.V. Morris, P.A. de Souza, S.W. Squyres, C. Weitz, A.S. Yen, J. Zipfel, T. Economou, Meteorites on Mars observed with the Mars exploration rovers. J. Geophys. Res. 113, E06S22 (2008)

    Article  ADS  Google Scholar 

  • A.E. Siegman, Defining, measuring, and optimizing laser beam quality. Proc. SPIE 1868, 2 (1993)

    Article  ADS  Google Scholar 

  • S.W. Squyres, J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhofer, A.H. Knoll, S.M. McLennan, H.Y. McSween, R.V. Morris, J.W. Rice, R. Rieder, L.A. Soderblom, In-situ evidence for an ancient aqueous environment at Meridiani Planum Mars. Science 306, 1709–1714 (2004)

    Article  ADS  Google Scholar 

  • S.W. Squyres, A.H. Knoll, R.E. Arvidson, B.C. Clark, J.P. Grotzinger, B.L. Jolliff, S.M. McLennan, N. Tosca, J.F. Bell, W.M. Calvin, W.H. Farrand, T.D. Glotch, M.P. Golombek, K.E. Herkenhoff, J.R. Johnson, G. Klingelhoefer, H.Y. McSween, A.S. Yen, Two years at Meridiani Planum: results from the opportunity rover. Science 313, 1403–1407 (2006a)

    Article  ADS  Google Scholar 

  • S.W. Squyres, R.E. Arvidson, D. Bollen, J.F. Bell, J. Brückner, N.A. Cabrol, W.M. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W.H. Farrand, W. Folkner, R. Gellert, T.D. Glotch, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, K.E. Herkenhoff, S. Hviid, J.R. Johnson, G. Klingelhöfer, A.H. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice, L. Richter, R. Rieder, C. Schröder, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, N.J. Tosca, H. Wänke, T. Wdowiak, M. Wolff, A. Yen, Overview of the opportunity Mars exploration rover mission to Meridiani planum: eagle crater to Purgatory ripple. J. Geophys. Res. 111(12), E12S12 (2006b)

    Article  ADS  Google Scholar 

  • S.W. Squyres, R.E. Arvidson, S. Ruff, R. Gellert, R.V. Morris, D.W. Ming, L. Crumpler, J.D. Farmer, D.J. Des Marais, A. Yen, S.M. McLennan, W. Calvin, J.F. Bell, B.C. Clark, A. Wang, T.J. McCoy, M.E. Schmidt, P.A. de Souza, Detection of silica-rich deposits on Mars. Science 320(5879), 1063 (2008)

    Article  ADS  Google Scholar 

  • E. Tréguier, C. d’Uston, P. Pinet, G. Berger, M. Toplis, T. McCoy, R. Gellert, J. Brückner, Overview of Mars surface geochemical diversity through APXS data multidimensional analysis: first attempt at modelling rock alteration. J. Geophys. Res. 113, E12S34 (2008)

    Article  ADS  Google Scholar 

  • D.T. Vaniman, D.L. Bish, S.J. Chipera, C.I. Fialips, J.W. Carey, W.C. Feldman, Magnesium sulfate salts and the history of water on Mars. Nature 431, 663–665 (2004)

    Article  ADS  Google Scholar 

  • N. Valette, C. Grèzes-Besset, D. Torricini, S. Maurice, L. Parès, M. Saccoccio, K. Gasc, Study of Ageing of ion assisted deposited multilayer components for ChemCam instrument of spectroscopic analysis on Mars. ICSO (2008)

  • H. Wänke, J. Brückner, G. Dreibus, R. Rieder, I. Ryabchikov, Chemical composition of rocks and soils at the Pathfinder site. Space Sci. Rev. 96, 317–330 (2001)

    Article  ADS  Google Scholar 

  • G.E. Webb, B.S. Kamber, Trace element Geochemistry as a tool for interpreting microbialites, in Earliest Life on Earth: Habitats, Environments and Methods of Detection, ed. by D. Golding, M. Glikson (Springer, Berlin, 2010), pp. 127–170

    Google Scholar 

  • R.C. Wiens, S. Maurice, (The ChemCam Team), The ChemCam Instrument Suite on the Mars Science Laboratory Rover Curiosity: remote sensing by laser-induced plasmas. Geochem. News 145 (2011). Special issue: Curiosity on Mars: Geochemical Instrumentation and Context Observations

  • A.P. Zent, C.P. McKay, The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146–157 (1994)

    Article  ADS  Google Scholar 

  • J. Zipfel, R. Anderson, J. Brückner, B.C. Clark, G. Dreibus, T. Economou, R. Gellert, G. Klingelhöfer, G.W. Lugmair, D.W. Ming, R. Rieder, S.W. Squyres, C. d’Uston, H. Wänke, A. Yen, A.S. Team, APXS analyses of Bounce Rock—the first shergottite on Mars. Meteorit. Planet. Sci. 39, A118 (2004)

    Google Scholar 

  • J. Zipfel, C. Schräder, B.L. Jolliff, R. Gellert, K.E. Herkenhoff, R. Rieder, R. Anderson, J.F. Bell, J. Brückner, J.A. Crisp, P.R. Christensen, B.C. Clark, P.A. de Souza, G. Dreibus, C. d’Uston, T. Economou, S.P. Gorevan, B.C. Hahn, G. Klingelhäfer, T.J. McCoy, H.Y. McSween, D.W. Ming, R.V. Morris, D.S. Rodionov, S.W. Squyres, H. Wänke, S.P. Wright, M.B. Wyatt, A.S. Yen, Bounce Rock—a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteorit. Planet. Sci. 46(1), 1–20 (2011)

    ADS  Google Scholar 

  • P. Zivojinovic, M. Lescure, H. Tap-Beteille, Design and stability analysis of a CMOS feedback laser driver. IEEE Trans. Instrum. Meas. 53, 102–108 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in France by the French Space Agency (CNES), the Centre National de la Recherche Scientifique (CNRS), and many institutes and universities across the country. It has benefitted from the continuous support of the Observatoire Midi-Pyrénées (OMP) and its director B. Dupré, where the Institut de Recherche en Astrophysique et Planétologie (IRAP), the laboratory responsible of the delivery of ChemCam Mast-Unit is located. Collaboration by colleagues in the US was funded by NASA’s Mars Program Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maurice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurice, S., Wiens, R.C., Saccoccio, M. et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Sci Rev 170, 95–166 (2012). https://doi.org/10.1007/s11214-012-9912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9912-2

Keywords

Navigation