Skip to main content
Log in

A Multi-Observatory Inter-Comparison of Line-of-Sight Synoptic Solar Magnetograms

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The observed photospheric magnetic field is a crucial parameter for understanding a range of fundamental solar and heliospheric phenomena. Synoptic maps, in particular, which are derived from the observed line-of-sight photospheric magnetic field and built up over a period of 27 days, are the main driver for global numerical models of the solar corona and inner heliosphere. Yet, in spite of 60 years of measurements, quantitative estimates remain elusive. In this study, we compare maps from seven solar observatories (Stanford/WSO, NSO/KPVT, NSO/SOLIS, NSO/GONG, SOHO/MDI, UCLA/MWO, and SDO /HMI) to identify consistencies and differences among them. We find that while there is a general qualitative consensus, there are also some significant differences. We compute conversion factors that relate measurements made by one observatory to another using both synoptic map pixel-by-pixel and histogram-equating techniques, and we also estimate the correlation between datasets. For example, Wilcox Solar Observatory (WSO) synoptic maps must be multiplied by a factor of 3 – 4 to match Mount Wilson Observatory (MWO) estimates. Additionally, we find no evidence that the MWO saturation correction factor should be applied to WSO data, as has been done in previous studies. Finally, we explore the relationship between these datasets over more than a solar cycle, demonstrating that, with a few notable exceptions, the conversion factors remain relatively constant. While our study was able to quantitatively describe the relationship between the datasets, it did not uncover any obvious “ground truth.” We offer several suggestions for how this may be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. Since SOLIS replaced KPVT, we collectively refer to these data as “SOLIS” when we present long-term analyses, acknowledging that prior to Carrington rotation (CR) 2008, the data were obtained by KPVT.

  2. Strictly speaking, the 5124 Å line does have a slight Zeeman sensitivity – g=−0.013 (Landi Degl’Innocenti 1982).

References

  • Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force data assimilative photospheric flux transport (ADAPT) model. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 343 – 346. doi: 10.1063/1.3395870 .

    Google Scholar 

  • Berger, T.E., Lites, B.W.: 2002, Weak-field magnetogram calibration using advanced Stokes polarimeter flux-density maps – I. Solar optical universal polarimeter calibration. Solar Phys. 208, 181 – 210. doi: 10.1023/A:1020537923728 .

    Article  ADS  Google Scholar 

  • Bering, E.A., Benbrook, J.R., Engebretson, M.J., Arnoldy, R.L.: 1998, Simultaneous electric and magnetic field observations of Pc1 – 2, and Pc3 pulsations. J. Geophys. Res. 103, 6741 – 6762. doi: 10.1029/97JA03327 .

    Article  ADS  Google Scholar 

  • Bertello, L., Petrie, G.J., Tran, T.: 2010, The impact of different global photospheric magnetic field maps on coronal models. In: AGU Fall Meeting, SH31B-1796.

  • Cauzzi, G., Smaldone, L.A., Balasubramaniam, K.S., Keil, S.L.: 1993, On the calibration of line-of-sight magnetograms. Solar Phys. 146, 207 – 227. doi: 10.1007/BF00662010 .

    Article  ADS  Google Scholar 

  • Demidov, M.L., Balthasar, H.: 2009, Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue. Solar Phys. 260, 261 – 270. doi: 10.1007/s11207-009-9443-5 .

    Article  ADS  Google Scholar 

  • Demidov, M.L., Balthasar, H.: 2012, On multi-line spectro-polarimetric diagnostics of the quiet Sun’s magnetic fields. Statistics, inversion results and effects on the SOHO/MDI magnetogram calibration. Solar Phys. 276, 43 – 59. doi: 10.1007/s11207-011-9863-x .

    Article  ADS  Google Scholar 

  • Demidov, M.L., Golubeva, E.M., Balthasar, H., Staude, J., Grigoryev, V.M.: 2008, Comparison of solar magnetic fields measured at different observatories: peculiar strength ratio distributions across the disk. Solar Phys. 250, 279 – 301. doi: 10.1007/s11207-008-9225-5 .

    Article  ADS  Google Scholar 

  • Jones, H.P.: 1989, Magnetograph group summary. In: Winglee, R.M., Dennis, B.R. (eds.) Max’91 Workshop2: Developments in Observations and Theory for Solar Cycle 22, NASA-TM-101893, 17 – 26.

    Google Scholar 

  • Jones, H.P.: 1992a, Calibrating the NASA/NSO spectromagnetograph. Bull. Am. Astron. Soc. 24, 814.

    ADS  Google Scholar 

  • Jones, H.P.: 1992b, Comparison of magnetograms by histogram equating. Bull. Am. Astron. Soc. 24, 1252.

    ADS  Google Scholar 

  • Jones, H.P., Ceja, J.A.: 2001, Preliminary comparison of magnetograms from KPVT/SPM, SOHO/MDI and GONG+. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, ASP Conf. Ser. 236, 87 – 95.

    Google Scholar 

  • Jones, H.P., Duvall, T.L. Jr., Harvey, J.W., Mahaffey, C.T., Schwitters, J.D., Simmons, J.E.: 1992, The NASA/NSO spectromagnetograph. Solar Phys. 139, 211 – 232. doi: 10.1007/BF00159149 .

    Article  ADS  Google Scholar 

  • Jones, H., Bogart, R., Canfield, R., Chapman, G., Henney, C., Kopp, G., et al.: 1993, A magnetograph comparison workshop. Bull. Am. Astron. Soc. 25, 1216.

    ADS  Google Scholar 

  • Jones, H.P., Harvey, J.W., Henney, C.J., Keller, C.U., Malanushenko, O.M.: 2004, Measurement scale of the SOLIS vector spectromagnetograph. Bull. Am. Astron. Soc. 36, 709.

    ADS  Google Scholar 

  • Landi Degl’Innocenti, E.: 1982, On the effective Lande factor of magnetic lines. Solar Phys. 77, 285. doi: 10.1007/BF00156111 .

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikic, Z., Riley, P., Downs, C., Lionello, R., Henney, C., Arge, C.N.: 2012, Coronal and heliospheric modeling using flux-evolved maps. In: Proceedings of Solar Wind 13, AIP Conf. Proc. 1539, 26 – 29.

    Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279, 295 – 316. doi: 10.1007/s11207-012-9976-x .

    Article  ADS  Google Scholar 

  • Lockwood, M.: 2001, Long-term variations in the magnetic fields of the Sun and the heliosphere: their origin, effects, and implications. J. Geophys. Res. 106, 16021 – 16038. doi: 10.1029/2000JA000115 .

    Article  ADS  Google Scholar 

  • Lockwood, M., Owens, M.J.: 2011, Centennial changes in the heliospheric magnetic field and open solar flux: the consensus view from geomagnetic data and cosmogenic isotopes and its implications. J. Geophys. Res. 116, 4109. doi: 10.1029/2010JA016220 .

    Article  Google Scholar 

  • Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 – 439.

    Article  ADS  Google Scholar 

  • Luhmann, J., Lee, C.O., Riley, P., Jian, L.K., Russell, C.T., Petrie, G.: 2012, Interplanetary conditions: lessons from this minimum. In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, IAU Symp. 286, 168 – 178. doi: 10.1017/S1743921312004802 .

    Google Scholar 

  • Petrie, G.J.D., Canou, A., Amari, T.: 2011, Nonlinear force-free and potential-field models of active-region and global coronal fields during the whole heliosphere interval. Solar Phys. 274, 163 – 194. doi: 10.1007/s11207-010-9687-0 .

    Article  ADS  Google Scholar 

  • Pietarila, A., Bertello, L., Harvey, J.W., Pevtsov, A.A.: 2013, Comparison of ground-based and space-based longitudinal magnetograms. Solar Phys. 282, 91 – 106. doi: 10.1007/s11207-012-0138-y .

    Article  ADS  Google Scholar 

  • Riley, P.: 2007, An alternative interpretation of the relationship between the inferred open solar flux and the interplanetary magnetic field. Astrophys. J. Lett. 667, L97 – L100. doi: 10.1086/522001 .

    Article  ADS  Google Scholar 

  • Riley, P., Lionello, R., Linker, J.A., Mikic, Z., Luhmann, J., Wijaya, J.: 2011, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Solar Phys. 274, 361 – 375. doi: 10.1007/s11207-010-9698-x .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikic, Z.: 2012, Corotating interaction regions during the recent solar minimum: the power and limitations of global MHD modeling. J. Atmos. Solar-Terr. Phys. 83, 1 – 10. doi: 10.1016/j.jastp.2011.12.013 .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, T.L. Jr., Dittmer, P.H., Gustafson, E.K.: 1977, The mean magnetic field of the Sun – observations at Stanford. Solar Phys. 54, 353 – 361. doi: 10.1007/BF00159925 .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429 .

    Article  ADS  Google Scholar 

  • Stellman, J.: 1998, Encyclopaedia of Occupational Health and Safety, International Labour Office, Geneva.

    Google Scholar 

  • Stevens, M.L., Linker, J.A., Riley, P., Hughes, W.J.: 2012, Underestimates of magnetic flux in coupled MHD model solar wind solutions. J. Atmos. Solar-Terr. Phys. 83, 22 – 31. doi: 10.1016/j.jastp.2012.02.005 .

    Article  ADS  Google Scholar 

  • Svalgaard, L.: 2006, How good (or bad) are the inner boundary conditions for heliospheric solar wind modeling? Presentation at 2006 SHINE Workshop.

  • Svalgaard, L., Cliver, E.W.: 2005, The IDV index: Its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 110, A12103. doi: 10.1029/2005JA011203 .

    Article  ADS  Google Scholar 

  • Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58, 225 – 239. doi: 10.1007/BF00157268 .

    Article  ADS  Google Scholar 

  • Thornton, C.E., Jones, H.P.: 2002, Comparison of three solar magnetographs. Bull. Am. Astron. Soc. 34, 1243.

    ADS  Google Scholar 

  • Tran, T., Bertello, L., Ulrich, R.K., Evans, S.: 2005, Magnetic fields from SOHO MDI converted to the Mount Wilson 150 foot Solar Tower scale. Astrophys. J. Suppl. 156, 295 – 310. doi: 10.1086/426713 .

    Article  ADS  Google Scholar 

  • Ulrich, R.K.: 1992, Analysis of magnetic fluxtubes on the solar surface from observations at Mt. Wilson of λ5250 and λ5233. In: Giampapa, M.S., Bookbinder, J.A. (eds.) Seventh Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun, ASP Conf. Ser. 26, 265 – 267.

    Google Scholar 

  • Ulrich, R.K., Bertello, L., Boyden, J.E., Webster, L.: 2009, Interpretation of solar magnetic field strength observations. Solar Phys. 255, 53 – 78. doi: 10.1007/s11207-008-9302-9 .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 1995, Solar implications of Ulysses interplanetary field measurements. Astrophys. J. Lett. 447, L143 – L146. doi: 10.1086/309578 .

    ADS  Google Scholar 

  • Wenzler, T., Solanki, S.K., Krivova, N.A., Fröhlich, C.: 2006, Reconstruction of solar irradiance variations in cycles 21 – 23 based on surface magnetic fields. Astron. Astrophys. 460, 583 – 595. doi: 10.1051/0004-6361:20065752 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the LWS Strategic Capabilities Program (NASA, NSF, and AFOSR), the NSF Center for Integrated Space Weather Modeling (CISM), NASA’s Heliophysics Theory Program (HTP), the Causes and Consequences of the Minimum of Solar Cycle 24 program, the STEREO/IMPACT, STEREO/SECCHI, and SDO/HMI instrument teams. Wilcox Solar Observatory data used in this study were obtained via the web site http://wso.stanford.edu courtesy of J.T. Hoeksema. The Wilcox Solar Observatory is currently supported by NASA. The SOLIS, GONG and KPVT programs are managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. SOHO/MDI is a project of international cooperation between ESA and NASA. The MWO data included in this study are from the synoptic program at the 150-Foot Solar Tower of the Mt. Wilson Observatory. The Mt. Wilson 150-Foot Solar Tower is operated by UCLA, with funding from NASA, ONR and NSF, under agreement with the Mt. Wilson Institute. HMI data are courtesy of the Joint Science Operations Center (JSOC) Science Data Processing team at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, P., Ben-Nun, M., Linker, J.A. et al. A Multi-Observatory Inter-Comparison of Line-of-Sight Synoptic Solar Magnetograms. Sol Phys 289, 769–792 (2014). https://doi.org/10.1007/s11207-013-0353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0353-1

Keywords

Navigation