Skip to main content
Log in

Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behavior of a Sand

  • STRUCTURAL PROPERTIES OF SOILS
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

Biopolymers, which are microbially induced polymers, can be used as an alternative material to improve engineering performance of soils. In this paper, a laboratory study of 0.075-1.0 mm size sand and biopolymer (i.e., xanthan gum) mixtures with various mix ratios (0%, 0.5%, 1.0%, and 1.5%) was performed. The materials, specimen preparation, and test methods are described, as are the results of a suite of permeability, odometer, unconfined compressive, and triaxial shear tests. The results suggests that specimen formation in the way used here could reduce permeability and increase compressibility, strength, and deformation characteristics in terms of stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Hausmann, Engineering Principles of Ground Modification, McGraw-Hill Publishing Company, United Kingdom (1990).

    Google Scholar 

  2. M. Terashi and I. Juran, "Ground Improvement − State of the Art," International Conference on Geotechnical and Geological Engineering, 19-24 November, Australia (2000).

  3. H. M. Lappin-Scott, F. Cusack, and J. W. Costerton, "Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery", Appl. Environ. Microbiol., 1373-1382 (1988).

  4. F. A. Macleod, H. M. Lappin-Scott, and J. W. Costerton, "Plugging of a model rock system by using starved bacteria," Appl. Environ. Microbiol., 54 (6), 1365-1372 (1988).

    Google Scholar 

  5. S. K. Ramachandran, V. Ramakrishnan, and S.S. Bang, "Remediation of concrete using micro-organisms," ACI Mater. J., 98 (1), 3-9 (2001).

    Google Scholar 

  6. I. C. Y Yang, Y. Li, J. K. Park, and T. F. Yen, "Subsurface application of slime-forming bacteria in soil matrices," Applied Biotechnology for Site Remediation, Robert E. Hinchee et al. eds., CRC Press, Inc. 268-274 (1994).

  7. S.W. Perkins, P. Gyr, and G. James, "The influence of biofilm on the mechanical behavior of sand," Geotech. Test. J., 23 (3), 300-312 (2000).

    Article  Google Scholar 

  8. B. C. Martinez, J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major, "Experimental optimization of microbial-induced carbonate precipitation for soil improvement," J. Geotech. Geoenviron. Eng., 139 (4), 587-598 (2013).

    Article  Google Scholar 

  9. O. Etemadi, I. G. Petrisor, D. Kim, M. W. Wan, and T. F. Yen, "Stabilization of metals in subsurface by biopolymers: Laboratory drainage flow studies," Soil Sediment Contamin., 12 (5), 647-661 (2003).

    Article  Google Scholar 

  10. R. Khachatoorian, I. B. Petrisor, C. C. Kwan, and T. F. Yen, "Biopolymer plugging effect: Laboratorypressurized pumping flow studies," J. Pet. Sci. Eng., 38 (1-2), 13-21 (2003).

    Article  Google Scholar 

  11. J. T. Dejong, M. B. Fritzges, and K. Nusslein, "Microbially induced cementation to control sand response to undrained shear," J. Geotech. Geoenviron. Eng., 132 (11), 1381-1392 (2006).

    Article  Google Scholar 

  12. V. S. Whiffin, L. A. Van Paassen, and M. P. Harkes, "Microbial carbonate precipitation as a soil improvement technique," Geomicrobiol. J., 24 (5), 417-423 (2007).

    Article  Google Scholar 

  13. A. Al-Qabany and K. Soga, "Effect of chemical treatment used in MICP on engineering properties of cemented soils," Geotechnique, 63 (4), 331-339 (2013).

    Article  Google Scholar 

  14. M. B. Burbank, T. J. Weaver, T. L. Green, B. C. Williams, and R. L. Crawford, "Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils," Geomicrobiol. J., 28, 301-312 (2011).

    Article  Google Scholar 

  15. M. Burbank, T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford, "Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria," J. Geotech. Geoenviron. Eng., 139 (6), 928-936 (2013).

    Article  Google Scholar 

  16. J. Mitchell and J. Santamarina, "Biological considerations in geotechnical engineering," J. Geotech. Geoenviron. Eng., 131 (10), 1222-1233 (2005).

    Article  Google Scholar 

  17. V. Ivanov and J. Chu, "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ," Rev. Environ. Sci. Biotechnol., 7 (2), 139-153 (2008).

    Article  Google Scholar 

  18. A.F. Cabalar and H. Canakci, "Direct shear tests on sand treated with xanthan gum," Proc. ICE, Ground Improv., 164, No. 2, 57-64 (2011).

  19. V. B. Bueno, R. Bentini, L. H. Catalani, and D. F. S. Petri, "Synthesis and swelling behavior of xanthanbased hydrogels," Carbohydr. Polym., 92 (2), 1091-1099 (2013).

    Article  Google Scholar 

  20. I. Chang, A. K. Prasidhi, J. Im, H. D. Shin, and G. C. Cho, "Soil treatment using microbial biopolymers for anti-desertification purposes," Geoderma, 39-47 (2015).

  21. D. Cole, D. Ringelberg, and C. Reynolds, "Small-scale mechanical properties of biopolymers," J. Geotech. Geoenviron. Eng., 138 (9), 1063-1074 (2012).

    Article  Google Scholar 

  22. W. Schlesinger and A. Pilmanis, "Plant-soil interactions in deserts," Biogeochemistry, 42 (1-2), 169-187 (1998).

    Article  Google Scholar 

  23. H. Khatami and B. O'Kelly, "Improving mechanical properties of sand using biopolymers," J. Geotech. Geoenviron. Eng., 139 (8), 1402-1406 (2012).

    Article  Google Scholar 

  24. A. Bouazza, W. P. Gates, and P. G. Ranhith, "Hydraulic conductivity of biopolymer-treated silty sand," Geotechnique, 59 (1), 71-72 (2009).

    Article  Google Scholar 

  25. D. Neupane, H. Yasuhara, N. Kinoshita, and T. Unno, "Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique," J. Geotech. Geoenviron. Eng., 139 (12), 2201-2211 (2013).

    Article  Google Scholar 

  26. B. M. Mortensen and J.T . DeJong, "Strength and stiffness of MICP treated sand subjected to various stress paths," ASCE GeoFrontiers 2011: Advances in Geotechnical Engineering, Geotechnical special publication 211, 4012-4020 (2011).

  27. M. N. Ibragimov, "Characteristics of soil grouting by hydro-jet technology," Soil Mech. Found. Eng., 2013, 50, 200-205.

    Article  Google Scholar 

  28. A.G. Malinin, Jet Grouting of Soils [in Russian], Moscow (2010).

  29. T. R. Neu and K. C. Marshall, "Bacterial polymers: physicochemical aspects of their interactions at interfaces," J. Biomater. Appl., 5, 107-133 (1990).

    Article  Google Scholar 

  30. P. Jansson, L. Kenne, and B. Lindberg, "Structure of the extracellular polysaccharide from Xanthomonas campestris," Carbohydr. Res., 45, 275-278 (1975).

    Article  Google Scholar 

  31. R. A. Hassler and D. H. Doherty, "Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris," Biotechnol. Prog., 6, 182-187 (1990).

    Article  Google Scholar 

  32. F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, "Xanthan gum: production, recovery, and properties," Biotechnol. Adv., 18, 549-579 (2000).

    Article  Google Scholar 

  33. M. Milas and M. Rinaudo, "Properties of xanthan gum in aqueous solutions: role of the conformational transition," Carbohydr. Res., 158, 191-204, (1986).

    Article  Google Scholar 

  34. C. S. H. Chen and E. W. Sheppard, "Conformation and shear stability of xanthan gum in solution," Polym. Eng. Sci., 20, 512-516 (1980).

    Article  Google Scholar 

  35. P. A. Brandford and J. Baird, "Industrial utilization of polysaccharide," Aspinall, G.O. (ed.), The Polysaccharides, Vol. 2, 411-490, Academic Press, New York (1983).

  36. ASTM D 2434-94. Standard test method for permeability of granular soils (constant head). Annual Book of ASTM Standards, American Society For Testing and Materials, West Conshohocken, PA (2000).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 5, p. 37, September-October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabalar, A., Wiszniewski, M. & Skutnik, Z. Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behavior of a Sand. Soil Mech Found Eng 54, 356–361 (2017). https://doi.org/10.1007/s11204-017-9481-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-017-9481-1

Navigation