Skip to main content
Log in

The Influence of Grain Size on Low-Stability Pre-Transitional Structural-Phase States of NiAl Intermetallide

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

Using the Monte Carlo method, the influence of grain size (model cell dimensions) on the peculiarities of pretransitional, low-stability structural-phase states of NiAl intermetallide in the region of structural-phase transformations is investigated during thermal cycling (heating and cooling). An analysis of the temperature dependences of the long-range order parameters shows that during heating the maximal long-range order is observed in an alloy with the maximal grain size, while the minimal – in the alloy with the smallest grain size. In order to achieve disordering of the alloy by increasing its grain size, it has to be increasingly overheated. Under cooling, long-range order primarily appears in a fine-grained alloy. The larger the grain size, the wider the temperature interval of the structural-phase transformation. The peculiarities of formation of the structural-phase states in the course of cooling as a function of the grain size (model cell dimensions) indicate that the first ordered regions appear in the fine-grained alloy. As the grain size increases, the temperature at which long-range order appears becomes lower, in other words, a still higher overcooling is required for the system's atomically-ordered states to be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kositsyn and I. I. Kositsyna, Usp. Fiz. Met., 9, 195–258 (2008).

    Article  Google Scholar 

  2. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on Structural-Phase Transformations in the Pretransitional Low-Stability Region of Metallic Systems (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2014).

  3. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metallic Systems during Thermal-Force Interaction [in Russian] (Ed. A. I. Potekaev), NTL Publ., Tomsk (2015).

  4. P. A. Chaplygin, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).

    Article  Google Scholar 

  5. A. A. Chaplygina, P. A. Chaplygin, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 13, No. 3, 403–407 (2016).

    Google Scholar 

  6. A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 5, 605–611 (2016).

    Article  Google Scholar 

  7. V. V. Kulagina, A. A. Chaplygina, L. A. Popova, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).

    Article  Google Scholar 

  8. A. A. Klopotov, A. I. Potekaev, E. V. Kozlov, and V. V. Kulagina, Russ. Phys. J., 54, No. 9, 1012–1023 (2011).

    Article  Google Scholar 

  9. A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 60, No. 2, 215–226 (2017).

    Article  Google Scholar 

  10. A. A. Klopotov, L. I. Trishkina, T. N. Markova, et al., Bull. RAS. Physics, 80, No. 11, 1576–1578 (2016).

    Google Scholar 

  11. A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Fund. Probl. Sovr. Materialoved., 13, No. 2, 155–161 (2016).

    Google Scholar 

  12. A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina,. et al., Russ. Phys. J., 59, No. 10, 1532–1542 (2017).

    Article  Google Scholar 

  13. G. M. Poletaev, A. I. Potekaev, M. D. Starostenkov, et al., Russ. Phys. J., 58, No. 1, 42–47 (2015).

    Article  Google Scholar 

  14. A. I. Potekaev, Морозов М. М., A. A. Klopotov, et al., Izvestiya VUZov. Chern Metallurg., 58, No. 8, 589–596 (2015).

  15. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 9, 1577–1587 (2018).

    Article  Google Scholar 

  16. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 10, 1775–1785 (2018).

    Article  Google Scholar 

  17. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 61, No. 3, 412–427 (2018).

    Article  Google Scholar 

  18. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 62, No. 1, 119–126 (2019).

    Article  Google Scholar 

  19. V. I. Iveronova and A. A. Kanzelson, Short-Range Order in Solid Solutions [in Russian], Nauka, Moscow (1977).

  20. M. A. Krivoglaz and A. A. Smirnov, The Theory of Ordering Alloys, Fizmatgiz, Moscow (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Potekaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 117–124, March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potekaev, A.I., Chaplygina, A.A., Chaplygin, P.A. et al. The Influence of Grain Size on Low-Stability Pre-Transitional Structural-Phase States of NiAl Intermetallide. Russ Phys J 62, 519–526 (2019). https://doi.org/10.1007/s11182-019-01740-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01740-w

Keywords

Navigation