Skip to main content

Advertisement

Log in

Water oxidation reaction promoted by MIL-101(Fe) photoanode under visible light irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This work spotlights the recently discovered photoelectrocatalytic properties of iron-based metal–organic frameworks (MOFs) for water oxidation reaction (WOR) under visible light irradiation. The low efficiency of WOR is one of the biggest difficulties faced by photoelectrochemical solar energy conversion; the development of new photoanodes for WOR is greatly desired. In view of the fact that a higher efficiency for WOR was forecast thanks to the peculiar properties of MOFs, such as a highly ordered framework and homogenous porous structure, the photoelectrodes based on MIL-101(Fe) containing photo-active iron(III) clusters have been fabricated by using a drop-casting method and applied to photoelectrochemical water oxidation as photoanodes. XRD measurements revealed the successful formation of MIL-101(Fe) electrodes while retaining their framework structures. From the results of photoelectrochemical measurements, the optimal thickness of the MIL-101(Fe) electrodes was determined to be ca. 60 μm, and the optimized MIL-101(Fe) electrode was found to promote photoelectrochemical WOR under visible light irradiation more efficiently than conventional α-Fe2O3 electrodes. Moreover, electrochemical impedance spectroscopy measurements demonstrated a lower resistance of charge transfer at the interface between the MOF surface and the electrolyte, resulting in better photoelectrochemical performance of the MIL-101(Fe) electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Zuttel, A. Remhof, A. Borgschulte, O. Friedrichs, Phil. Trans. R. Soc. A 368, 3329 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  PubMed  Google Scholar 

  3. K. Maeda, K. Domen, J. Phys. Chem. Lett. 1, 2655 (2010)

    Article  CAS  Google Scholar 

  4. M. El-Khouly, E. El-Mohsnawy, S. Fukuzumi, J. Photochem. Photobiol. C Photochem. 31, 36 (2017)

    Article  CAS  Google Scholar 

  5. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 7520 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. B. Iandolo, B. Wickman, I. Zoric, A. Hellman, J. Mater. Chem. A 3, 16896 (2015)

    Article  CAS  Google Scholar 

  8. K. Sivula, F.L. Formal, M. Gratzel, ChemSyschem 4, 432 (2011)

    Article  CAS  Google Scholar 

  9. K.M.H. Young, B.M. Klahr, O. Zandi, T.W. Hamann, Catal. Sci. Technol. 3, 1660 (2013)

    Article  CAS  Google Scholar 

  10. T.Y. Yang, H.Y. Kang, Y.J. Lee, J.H. Lee, B. Koo, K.T. Nam, Y.C. Joo, Phys. Chem. Chem. Phys. 15, 2117 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. P. Liao, J.A. Keith, E.A. Carter, J. Am. Chem. Soc. 134, 13296 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. M. Zhang, Y. Lin, T.J. Mullen, W. Lin, L.D. Sun, C.H. Yan, T.E. Patten, D. Wang, G. Liu, J. Phys. Chem. Lett. 3, 3188 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. W. Cheng, J. He, Z. Sun, Y. Peng, T. Yao, Q. Li, Y. Jiang, F. Hu, Z. Xie, B. He, S. Wei, J. Phys. Chem. C 116, 24060 (2012)

    Article  CAS  Google Scholar 

  14. W.D. Chemelewski, N.T. Hahn, C.B. Mullins, J. Phys. Chem. C 116, 5255 (2012)

    Article  CAS  Google Scholar 

  15. O. Zandi, B.K. Klahr, T.W. Hamann, Energy Environ. Sci. 6, 634 (2013)

    Article  CAS  Google Scholar 

  16. S. Shen, P. Guo, D.A. Wheeler, J. Jiang, S.A. Lindley, C.X. Kronawitter, J.Z. Zhang, L. Guo, S.S. Mao, Nanoscale 5, 9867 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. X. Qi, G. She, M. Wang, L. Mu, W. Shin, Chem. Commun. 49, 5742 (2013)

    Article  CAS  Google Scholar 

  18. Y. Hou, F. Zuo, A. Dagg, P. Feng, Angew. Chem. 125, 1286 (2013)

    Article  Google Scholar 

  19. K. Meyer, M. Ranochiarri, J.A. van Bokhoven, Energy Environ. Sci. 8, 1923 (2015)

    Article  CAS  Google Scholar 

  20. A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 55, 5414 (2016)

    Article  CAS  Google Scholar 

  21. M.A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 16, 4919 (2014)

    Article  CAS  Google Scholar 

  22. T. Zhang, W. Lin, Chem. Soc. Rev. 43, 5982 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. J.L. Wang, C. Wang, W. Lin, ACS Catal. 2, 2630 (2012)

    Article  CAS  Google Scholar 

  24. Y. Li, H. Xu, S. Ouyang, J. Ye, Phys. Chem. Chem. Phys. 18, 7563 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. S. Wang, X. Wang, Small 11, 3097 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Horiuchi, T. Toyao, M. Takeuchi, M. Matsuoka, M. Anpo, Phys. Chem. Chem. Phys. 15, 13243 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. C. Hou, Q. Xu, Y. Wang, X. Hu, RSC Adv. 3, 19820 (2013)

    Article  CAS  Google Scholar 

  28. L. Zhang, P. Cui, H. Yang, J. Chen, F. Xiao, Y. Guo, Y. Liu, W. Zhang, F. Huo, B. Liu, Adv. Sci. 3, 1500243 (2016)

    Article  CAS  Google Scholar 

  29. S. Bauer, C. Serre, T. Devic, P. Horcajada, J. Marrot, G. Férey, N. Stock, Inorg. Chem. 47, 7568 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Horiuchi, T. Toyao, K. Miyahara, L. Zakary, D.V. Dan, Y. Kamata, T.H. Kim, S.W. Lee, M. Matsuoka, Chem. Commun. 52, 5190 (2016)

    Article  CAS  Google Scholar 

  31. P.Á. Szilágyi, P.S. Crespo, I. Dugulan, J. Gascon, H. Geerlingsad, B. Dama, CrystEngComm 15, 10175 (2013)

    Article  CAS  Google Scholar 

  32. J. Tang, M. Yang, M. Yang, J. Wang, W. Dong, G. Wang, New J. Chem. 39, 4919 (2015)

    Article  CAS  Google Scholar 

  33. M. Fondel, T.J. Jacobsonn, M. Boman, T. Edvisson, J. Mater. Chem. A 2, 3352 (2014)

    Article  Google Scholar 

  34. J. Guo et al., Adv. Mater. 17, 2320 (2005)

    Article  CAS  Google Scholar 

  35. R.R. Devarapalli, J. Debgupta, V.K. Pillai, M.V. Shelke, Sci. Rep. 4, 4897 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by JST ACCEL, Japan (Grant No. JPMJAC1302), by the Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant Nos. 25410241, 15K17903 and 15K13820) and by the Global Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST), Korea (Grant No. 2010-00339). T.T. thanks the JSPS Research Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Horiuchi or Masaya Matsuoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lionet, Z., Kamata, Y., Nishijima, S. et al. Water oxidation reaction promoted by MIL-101(Fe) photoanode under visible light irradiation. Res Chem Intermed 44, 4755–4764 (2018). https://doi.org/10.1007/s11164-018-3271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3271-x

Keywords

Navigation