Skip to main content
Log in

Methanol conversion to olefins on H-ZSM-5/Al2O3 catalysts: kinetic modeling

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A kinetic study of the methanol-to-olefin (MTO) process was performed for alumina, zeolite H-ZSM-5, and H-ZSM-5/alumina catalyst with 1/1 zeolite/alumina ratio for the solids prepared using commercial zeolite Na-ZSM-5. The catalysts were characterized by XRD, TEM, nitrogen adsorption isotherms, and ammonia thermodesorption. A new kinetic model of the MTO reaction over the as-prepared catalyst was proposed. The model is based on the experimental data of the methanol conversion to dimethyl ether and light olefins obtained under different temperatures and methanol partial pressures. Moreover, the model accounts for the product distribution dependence on the acidity of the as-prepared catalysts. The developed model was found to be sensitive to the methanol conversion route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hajimirzaee S, Ainte M, Soltani B et al (2015) Dehydration of methanol to light olefins upon zeolite/alumina catalysts: effect of reaction conditions, catalyst support and zeolite modification. Chem Eng Res Des 93:541–553. https://doi.org/10.1016/j.cherd.2014.05.011

    Article  CAS  Google Scholar 

  2. Bjørgen M, Joensen F, Lillerud KP et al (2009) The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catal Today 142:90–97. https://doi.org/10.1016/j.cattod.2009.01.015

    Article  Google Scholar 

  3. Zakaria ZY, Amin NAS, Linnekoski J (2013) A perspective on catalytic conversion of glycerol to olefins. Biomass Bioenergy 55:370–385. https://doi.org/10.1016/j.biombioe.2013.02.014

    Article  CAS  Google Scholar 

  4. Losch P, Pinar AB, Willinger MG et al (2017) H-ZSM-5 zeolite model crystals: structure–diffusion–activity relationship in methanol-to-olefins catalysis. J Catal 345:11–23. https://doi.org/10.1016/j.jcat.2016.11.005

    Article  CAS  Google Scholar 

  5. Müller S, Liu Y, Vishnuvarthan M et al (2015) Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J Catal 325:48–59. https://doi.org/10.1016/j.jcat.2015.02.013

    Article  Google Scholar 

  6. Khanmohammadi M, Amani S, Garmarudi AB, Niaei A (2016) Methanol-to-propylene process: perspective of the most important catalysts and their behavior. Chin J Catal 37:325–339. https://doi.org/10.1016/s1872-2067(15)61031-2

    Article  CAS  Google Scholar 

  7. Olsbye U, Svelle S, Bjrgen M et al (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831. https://doi.org/10.1002/anie.201103657

    Article  CAS  Google Scholar 

  8. Fadaeerayeni S, Sohrabi M, Royaee SJ (2015) Kinetic modeling of MTO process applying ZSM-5 zeolite modified with phosphorus as the reaction catalyst. Pet Sci Technol 33:1093–1100. https://doi.org/10.1080/10916466.2011.606552

    Article  CAS  Google Scholar 

  9. Deutschmann O, Knözinger H, Kochloefl K, Turek T (2009) Heterogeneous catalysis and solid catalysts. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007

    Google Scholar 

  10. Zhang S, Gong Y, Zhang L et al (2015) Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: finely tuning the acidic property. Fuel Process Technol 129:130–138. https://doi.org/10.1016/j.fuproc.2014.09.006

    Article  CAS  Google Scholar 

  11. Xu M, Lunsford JH, Goodman DW, Bhattacharyya A (1997) Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl Catal A 149:289–301. https://doi.org/10.1016/s0926-860x(96)00275-x

    Article  CAS  Google Scholar 

  12. Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156:497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082

    Article  CAS  Google Scholar 

  13. Sierra I, Erena J, Aguayo AT et al (2013) Kinetic modeling for the dehydration of methanol to dimethyl ether over y-Al2O3. Chem Eng Trans 32:613–619

    Google Scholar 

  14. Mollavali M, Yaripour F, Atashi H, Sahebdelfar S (2008) Intrinsic kinetics study of dimethyl ether synthesis from methanol on γ-Al2O3 catalysts. Ind Eng Chem Res 47:3265–3273. https://doi.org/10.1021/ie800051h

    Article  CAS  Google Scholar 

  15. Pejic ND, Maksimovic JP, Blagojevic SM et al (2012) Kinetic analytical method for determination of uric acid in human urine using analyte pulse perturbation technique. J Braz Chem Soc 23:1450–1459. https://doi.org/10.1590/s0103-50532012005000006

    CAS  Google Scholar 

  16. Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48. https://doi.org/10.1016/s1387-1811(98)00319-9

    Article  Google Scholar 

  17. Hutchings GJ, Hunter R (1990) Hydrocarbon formation from methanol and dimethyl ether: a review of the experimental observations concerning the mechanism of formation of the primary products. Catal Today 6:279–306. https://doi.org/10.1016/0920-5861(90)85006-A

    Article  CAS  Google Scholar 

  18. Chang CD (1988) Mechanism of hydrocarbon formation from methanol. In: Bibby DM, Chang CD, Howe RF, Yurchak S (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 127–143

    Google Scholar 

  19. Froment GF, Dehertog WJ, Marchi AJ (1992) Zeolite catalysis in the conversion of methanol into olefins. Catalysis. https://doi.org/10.1039/9781847553218-00001

    Google Scholar 

  20. Mokrani T, Scurrell M (2009) Gas conversion to liquid fuels and chemicals: the methanol route-catalysis and processes development. Catal Rev 51:1–145. https://doi.org/10.1080/01614940802477524

    Article  CAS  Google Scholar 

  21. Wang W, Jiang Y, Hunger M (2006) Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal Today 113:102–114. https://doi.org/10.1016/j.cattod.2005.11.015

    Article  CAS  Google Scholar 

  22. Seiler M, Wang W, Buchholz A, Hunger M (2003) Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion. Catal Lett 88:187–191. https://doi.org/10.1023/a:1024018023895

    Article  CAS  Google Scholar 

  23. McCann DM, Lesthaeghe D, Kletnieks PW et al (2008) Cover picture: a complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment (Angew. Chem. Int. Ed. 28/2008). Angew Chem Int Ed 47:5095. https://doi.org/10.1002/anie.200890132

    Article  Google Scholar 

  24. Goguen PW, Xu T, Barich DH et al (1998) Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. J Am Chem Soc 120:2650–2651. https://doi.org/10.1021/ja973920z

    Article  CAS  Google Scholar 

  25. Song W, Haw JF, Nicholas JB, Heneghan CS (2000) Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J Am Chem Soc 122:10726–10727. https://doi.org/10.1021/ja002195g

    Article  CAS  Google Scholar 

  26. Arstad B, Kolboe S (2001) The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J Am Chem Soc 123:8137–8138. https://doi.org/10.1021/ja010668t

    Article  CAS  Google Scholar 

  27. Li J, Wei Y, Liu G et al (2011) Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: correlating catalytic performance and reaction mechanism to zeolite topology. Catal Today 171:221–228. https://doi.org/10.1016/j.cattod.2011.02.027

    Article  CAS  Google Scholar 

  28. Li J, Qi Y, Liu Z et al (2008) Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22. Catal Lett 121:303–310. https://doi.org/10.1007/s10562-007-9338-8

    Article  CAS  Google Scholar 

  29. Bjørgen M, Svelle S, Joensen F et al (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 249:195–207. https://doi.org/10.1016/j.jcat.2007.04.006

    Article  Google Scholar 

  30. Svelle S, Joensen F, Nerlov J et al (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128:14770–14771. https://doi.org/10.1021/ja065810a

    Article  CAS  Google Scholar 

  31. Cui Z-M, Liu Q, Ma Z et al (2008) Direct observation of olefin homologations on zeolite ZSM-22 and its implications to methanol to olefin conversion. J Catal 258:83–86. https://doi.org/10.1016/j.jcat.2008.05.029

    Article  CAS  Google Scholar 

  32. Svelle S, Rønning PO, Olsbye U, Kolboe S (2005) Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [12C]propene or [12C]n-butene and [13C]methanol. J Catal 234:385–400. https://doi.org/10.1016/j.jcat.2005.06.028

    Article  CAS  Google Scholar 

  33. Lente G (2015) Solving rate equations. In: Deterministic kinetics in chemistry and systems biology: dynamics of complex reaction networks. Springer, Cham, p 21–59

  34. Ying L, Yuan X, Ye M et al (2015) A seven lumped kinetic model for industrial catalyst in DMTO process. Chem Eng Res Des 100:179–191. https://doi.org/10.1016/j.cherd.2015.05.024

    Article  CAS  Google Scholar 

  35. Khadzhiev SN, Magomedova MV, Peresypkina EG (2015) Kinetic models of methanol and dimethyl ether conversion to olefins over zeolite catalysts (review). Pet Chem 55:503–521. https://doi.org/10.1134/s0965544115070063

    Article  CAS  Google Scholar 

  36. Chang CD (1983) Hydrocarbons from methanol. Catal Rev 25:1–118. https://doi.org/10.1080/01614948308078874

    Article  CAS  Google Scholar 

  37. Lei Z, Zou Z, Dai C et al (2011) Synthesis of dimethyl ether (DME) by catalytic distillation. Chem Eng Sci 66:3195–3203. https://doi.org/10.1016/j.ces.2011.02.034

    Article  CAS  Google Scholar 

  38. Bjørgen M, Olsbye U, Petersen D, Kolboe S (2004) The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J Catal 221:1–10. https://doi.org/10.1016/s0021-9517(03)00284-7

    Article  Google Scholar 

  39. Zhokh AA, Trypolskyi AI, Strizhak PE (2017) Two-path conversion of methanol to olefins on H-ZSM-5/Al2O3 catalyst. Theor Exp Chem 53:130–137. https://doi.org/10.1007/s11237-017-9509-7

    Article  CAS  Google Scholar 

  40. Zhokh AA, Trypolskyi AI, Strizhak PE (2017) Effect of H-ZSM-5/Al2O3 catalyst acidity on the conversion of methanol. Theor Exp Chem 53:276–282. https://doi.org/10.1007/s11237-017-9526-6

    Article  CAS  Google Scholar 

  41. Kolar-Anić L, Čupić Ž, Schmitz G, Anić S (2010) Improvement of the stoichiometric network analysis for determination of instability conditions of complex nonlinear reaction systems. Chem Eng Sci 65:3718–3728. https://doi.org/10.1016/j.ces.2010.03.008

    Article  Google Scholar 

  42. Clarke BL (1988) Stoichiometric network analysis. Cell Biophys 12:237–253. https://doi.org/10.1007/bf02918360

    Article  CAS  Google Scholar 

  43. Urbanczik R, Wagner C (2005) An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 21:1203–1210

    Article  CAS  Google Scholar 

  44. Schmitz G, Kolar-Anić LZ, Anić SR, Čupić ŽD (2008) Stoichiometric network analysis and associated dimensionless kinetic equations. Application to a model of the Bray–Liebhafsky reaction. J Phys Chem A 112:13452–13457. https://doi.org/10.1021/jp8056674

    Article  CAS  Google Scholar 

  45. Hosseinpour M, Golzary A, Saber M, Yoshikawa K (2017) Denitrogenation of biocrude oil from algal biomass in high temperature water and formic acid mixture over H + ZSM-5 nanocatalyst. Fuel 206:628–637. https://doi.org/10.1016/j.fuel.2017.06.055

    Article  CAS  Google Scholar 

  46. Schneider P, Hudec P, Solcova O (2008) Pore-volume and surface area in microporous–mesoporous solids. Microporous Mesoporous Mater 115:491–496. https://doi.org/10.1016/j.micromeso.2008.02.024

    Article  CAS  Google Scholar 

  47. Phung TK, Hernández LP, Lagazzo A, Busca G (2015) Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Appl Catal A 493:77–89. https://doi.org/10.1016/j.apcata.2014.12.047

    Article  CAS  Google Scholar 

  48. Lónyi F, Valyon J (2001) On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater 47:293–301. https://doi.org/10.1016/s1387-1811(01)00389-4

    Article  Google Scholar 

  49. Suzuki K, Aoyagi Y, Katada N et al (2008) Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica–alumina. Catal Today 132:38–45. https://doi.org/10.1016/j.cattod.2007.12.010

    Article  CAS  Google Scholar 

  50. Gafurov MR, Mukhambetov IN, Yavkin BV et al (2015) Quantitative analysis of Lewis acid centers of γ-alumina by using EPR of the adsorbed anthraquinone as a probe molecule: comparison with the pyridine, carbon monoxide IR, and TPD of ammonia. J Phys Chem C 119:27410–27415. https://doi.org/10.1021/acs.jpcc.5b09759

    Article  CAS  Google Scholar 

  51. Feng R, Liu S, Bai P et al (2014) Preparation and characterization of γ-Al2O3 with rich Brønsted acid sites and its application in the fluid catalytic cracking process. J Phys Chem C 118:6226–6234. https://doi.org/10.1021/jp411405r

    Article  CAS  Google Scholar 

  52. Yu Z, Li S, Wang Q et al (2011) Brønsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J Phys Chem C 115:22320–22327. https://doi.org/10.1021/jp203923z

    Article  CAS  Google Scholar 

  53. Khatamian M, Irani M (2009) Preparation and characterization of nanosized ZSM-5 zeolite using kaolin and investigation of kaolin content, crystallization time and temperature changes on the size and crystallinity of products. J Iran Chem Soc 6:187–194

    Article  CAS  Google Scholar 

  54. Ishihara A, Inui K, Hashimoto T, Nasu H (2012) Preparation of hierarchical b and Y zeolite-containing mesoporous silica–aluminas and their properties for catalytic cracking of n-dodecane. J Catal 295:81–90. https://doi.org/10.1016/j.jcat.2012.07.027

    Article  CAS  Google Scholar 

  55. Amin NAS, Anggoro DD (2003) Characterization and activity of Cr, Cu and Ga modified ZSM-5 for direct conversion of methane to liquid hydrocarbons. J Nat Gas Chem 12:123–134

    CAS  Google Scholar 

  56. Khadzhiev SN, Magomedova MV, Peresypkina EG (2014) Mechanism of olefin synthesis from methanol and dimethyl ether over zeolite catalysts: a review. Pet Chem 54:245–269. https://doi.org/10.1134/s0965544114040057

    Article  CAS  Google Scholar 

  57. Gayubo AG, Aguayo AT, Alonso A et al (2005) Reaction scheme and kinetic modelling for the MTO process over a SAPO-18 catalyst. Catal Today 106:112–117. https://doi.org/10.1016/j.cattod.2005.07.133

    Article  CAS  Google Scholar 

  58. Aguayo AT, Mier D, Gayubo AG et al (2010) Kinetics of methanol transformation into hydrocarbons on a HZSM-5 zeolite catalyst at high temperature (400–550 °C). Ind Eng Chem Res 49:12371–12378. https://doi.org/10.1021/ie101047f

    Article  CAS  Google Scholar 

  59. Pérez-Uriarte P, Ateka A, Aguayo AT et al (2016) Kinetic model for the reaction of DME to olefins over a HZSM-5 zeolite catalyst. Chem Eng J 302:801–810. https://doi.org/10.1016/j.cej.2016.05.096

    Article  Google Scholar 

  60. White JL (2011) Methanol-to-hydrocarbon chemistry: the carbon pool (r)evolution. Catal Sci Technol 1:1630. https://doi.org/10.1039/c1cy00197c

    Article  CAS  Google Scholar 

  61. Park T-YY, Froment GF (2001) Kinetic modeling of the methanol to olefins process. 1. Model formulation. Ind Eng Chem Res 40:4172–4186. https://doi.org/10.1021/ie0008530

    Article  CAS  Google Scholar 

  62. Čupić Ž, Schmitz G, Kolar-Anic L (2016) Stoichiometric network analysis as mathematical method for examinations of instability region and oscillatory dynamics. Sci Publ State Univ Novi Pazar A 8:43–64

    Article  Google Scholar 

  63. Hadac O, Schreiber I (2011) Stoichiometric network analysis of the photochemical processes in the mesopause region. Phys Chem Chem Phys 13:1314–1322. https://doi.org/10.1039/c0cp01267j

    Article  CAS  Google Scholar 

  64. Hochberg D, Bourdon Garcia RD, Agreda Bastidas JA, Ribo JM (2017) Stoichiometric network analysis of spontaneous mirror symmetry breaking in chemical reactions. Phys Chem Chem Phys 19:17618–17636. https://doi.org/10.1039/c7cp02159c

    Article  CAS  Google Scholar 

  65. Xavier D, Vázquez S, Higuera C et al (2011) Tools-4-Metatool (T4M): online suite of web-tools to process stoichiometric network analysis data from Metatool. BioSystems 105:169–172. https://doi.org/10.1016/j.biosystems.2011.04.004

    Article  CAS  Google Scholar 

  66. Tian P, Wei Y, Ye M, Liu ZM (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Strizhak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strizhak, P., Zhokh, A. & Trypolskyi, A. Methanol conversion to olefins on H-ZSM-5/Al2O3 catalysts: kinetic modeling. Reac Kinet Mech Cat 123, 247–268 (2018). https://doi.org/10.1007/s11144-017-1304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1304-x

Keywords

Navigation