Skip to main content
Log in

Antioxidant Activity and Phenolic Content of Betalain Extracts from Intact Plants and Hairy Root Cultures of the Red Beetroot Beta vulgaris cv. Detroit Dark Red

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Betalains are water-soluble plant pigments that are widely used as food colorants, and have a wide range of desirable biological activities, including antioxidant, anti-inflammatory, hepatoprotective, anti-cancer properties. They can be produced from various plants, notably beetroot, but betalain products obtained in this way also have some undesirable properties and are difficult to standardize. A potentially attractive alternative is to use hairy root cultures. In the study reported here, we found that betalain extracts obtained from hairy root cultures of the red beetroot B. vulgaris cv. Detroit Dark Red also had higher antioxidant activity than extracts obtained from mature beetroots: six-fold higher 2,2-dyphenyl-1-picrylhydrazyl radical scavenging ability (90.7% inhibition, EC50 = 0.11 mg, vs 14.2% inhibition, EC50 = 0.70 mg) and 3.28-fold higher oxygen radical absorbance capacity (4,100 µM TE/g dry extract, vs 1,250 µM TE/g dry extract). The high antioxidant activity of the hairy root extracts was associated with increased concentrations (more than 20-fold) of total phenolic concomitant compounds, which may have synergistic effects with betalains. The presence of 4-hydroxybenzoic acid, caffeic acid, catechin hydrate, and epicatechin were detected in both types of extract, but at different concentrations. Rutin was only present at high concentration (1.096 mg.g−1 dry extract) in betalain extracts from the hairy root cultures, whereas chlorogenic acid was only detected at measurable concentrations in extracts from intact plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FL:

Fluorescein

TE:

Trolox equivalents

FAE:

Ferulic acid equivalents

DE:

Dry extract

References

  1. Azeredo HMC (2008) Betalains: properties, sources, applications, and stability—a review. Int J Food Sci Tech 44:2365–2376

    Article  Google Scholar 

  2. Barath A, Halasz A, Nemeth E, Zalan Z (2004) Selection of LAB strains for fermented red beet juice production. Eur Food Res Technol 218:184–187

    Article  CAS  Google Scholar 

  3. Martinez L, Cilla I, Beltran JA, Roncales P (2006) Comparative effect of red yeast rice (Monascus purpureus), red beet root (Beta vulgaris) and betanin (E-162) on colour and consumer acceptability of fresh pork sausages packaged in a modified atmosphere. J Sci Food Agric 86:500–508

    Article  CAS  Google Scholar 

  4. Escribano J, Pedreno MA, Garcia-Carmona F, Munoz R (1998) Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem Anal 9:124–127

    Article  CAS  Google Scholar 

  5. Kapadia GJ, Azuine MA, Sridhar R, Okuda Y, Tsuruta A, Ichiishi E, Mukainake T, Takasaki M, Konoshima T, Nishino H, Tokuda H (2003) Chemoprevention of DMBA-induced UV-B promoted, NOR-1-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacol Res 47:141–148

    Article  CAS  Google Scholar 

  6. Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D (2005) In vitro effects of beet root juice on stimulated and unstimulated peripheral blood mononuclear cells. Am J Biochem Biotechnol 1:180–185

    Article  Google Scholar 

  7. Frank T, Stintzing FC, Carle R, Bitsch I, Quaas D, Strass G, Bitsch R, Netzel M (2005) Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol Res 52:290–297

    Article  CAS  Google Scholar 

  8. Pavlov A, Kovatcheva P, Tuneva D, Ilieva M, Bley T (2005) Radical scavenging activity and stability of betalains from Beta vulgaris hairy root culture in simulated conditions of human gastrointestinal tract. Plant Foods Hum Nutr 60:43–47

    Article  Google Scholar 

  9. Gliszczynska-Swiglo A, Szymusiak H, Malinowska P (2006) Betanin, the main pigment of red beet: molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam 23:1079–1087

    Article  CAS  Google Scholar 

  10. Gandía-Herrero F, Escribano J, García-Carmona F (2009) The role of phenolic hydroxy groups in the free radical scavenging activity of betalains. J Nat Prod 72:1142–1146

    Article  Google Scholar 

  11. Moreno DA, Garcia-Viguera C, Gil JI, Gil-Izquierdo A (2008) Betalains in the era of global agri-food science, technology and nutritional health. Phytochem Rev 7:261–280

    Article  CAS  Google Scholar 

  12. Mosshammer MR, Stintzing FC, Carle R (2006) Evaluation of different methods for the production of juice concentrates and fruit powders from cactus pear. Innov Food Sci Emerg Technol 7:275–287

    Article  CAS  Google Scholar 

  13. Stintzing FC, Carle R (2007) Betalains—emerging prospects for food scientists. Trends Food Sci Technol 18:514–525

    Article  CAS  Google Scholar 

  14. Georgiev V, Ilieva M, Bley T, Pavlov A (2008) Betalain production in plant in vitro systems. Acta Physiol Plant 30:581–593

    Article  CAS  Google Scholar 

  15. Pavlov A, Georgiev V, Kovatcheva P (2003) Relationship between type and age of the inoculum cultures and betalains biosynthesis by Beta vulgaris hairy root culture. Biotechnol Lett 25:307–309

    Article  CAS  Google Scholar 

  16. Pavlov A, Kovatcheva P, Georgiev V, Koleva I, Ilieva M (2002) Biosynthesis and radical scavenging activity of betalains during the cultivation of red beet (Beta vulgaris) hairy root cultures. Z Naturforsch C 57:640–644

    CAS  Google Scholar 

  17. Pavlov A, Bley T (2006) Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochem 41:848–852

    Article  CAS  Google Scholar 

  18. Pavlov A, Georgiev M, Bley T (2007) Batch and fed-batch production of betalains by red beet (Beta vulgaris) hairy roots in a bubble column reactor. Z Naturforsch C 62:439–446

    CAS  Google Scholar 

  19. Neelwarne B, Thimmaraju R (2009) Bioreactor for cultivation of red beet hairy roots and in situ recovery of primary and secondary metabolites. Eng Life Sci 9:227–238

    Article  CAS  Google Scholar 

  20. Pavlov A, Georgiev V, Ilieva M (2005) Betalain biosynthesis by red beet (Beta vulgaris L.) hairy root culture. Process Biochem 40:1531–1533

    Article  CAS  Google Scholar 

  21. Georgiev M, Georgiev V, Weber J, Bley T, Ilieva M, Pavlov A (2008) Agrobacterium rhizogenes-mediated genetic transformations: a powerful tool for the production of metabolites. In: Wolf T, Koch J (eds) Genetically Modified Plants. Nova Science, Hauppauge, pp 99–126

    Google Scholar 

  22. Weber J, Georgiev V, Pavlov A, Bley T (2008) Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger. Cytometry A 73:931–939

    Google Scholar 

  23. Georgiev V, Weber J, Bley T, Pavlov A (2009) Improved procedure for nucleus extraction for DNA measurements by flow cytometry of red beet (Beta vulgaris L.) hairy roots. J Biosci Bioeng 107:439–441

    Article  CAS  Google Scholar 

  24. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  25. Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26:211–219

    CAS  Google Scholar 

  26. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626

    Article  CAS  Google Scholar 

  27. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    Article  CAS  Google Scholar 

  28. Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi WG, Sellappan S, Akoh CC, Bunch R, Felker P (2005) Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 53:442–451

    Article  CAS  Google Scholar 

  29. Schieber A, Keller P, Carle R (2001) Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J Chromatography A 910:265–273

    Article  CAS  Google Scholar 

  30. Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114

    Article  CAS  Google Scholar 

  31. Taya M, Mine K, Kinooka M, Tone S, Ichi T (1992) Production and release of pigments by culture of transformed hairy root of red beet. J Ferment Bioeng 73:31–36

    Article  CAS  Google Scholar 

  32. Eder B (2004) Pigments. In: Nollet LML (ed) Handbook of Food Analysis. Volume 1: Physical characterization and nutrient analysis. CRC, Boca Raton, pp 805–878

    Google Scholar 

  33. Mattila P, Hellstrom J (2007) Phenolic acids in potatoes, vegetables, and some of their products. J Food Compost Anal 20:152–160

    Article  CAS  Google Scholar 

  34. Boyle SP, Dobson VL, Duthie SJ, Hinselwood DC, Kyle JAM, Collins AR (2000) Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr 54:774–782

    Article  CAS  Google Scholar 

  35. Wettasinghe M, Bolling B, Plhak L, Xiao H, Parkin K (2002) Phase II enzyme-inducing and antioxidant activities of beetroot (Beta vulgaris L.) extracts from phenotypes of different pigmentation. J Agric Food Chem 50:6704–6709

    Article  CAS  Google Scholar 

  36. Číž M, Čížová H, Denev P, Kratchanova M, Slavov A, Lojek A (2010) Different methods for control and comparison of the antioxidant properties of vegetables. Food Control 21:518–523

    Article  Google Scholar 

  37. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128

    Article  CAS  Google Scholar 

  38. Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldívar SO (2009) Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum Nutr 64:146–152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Ivanov Pavlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, V.G., Weber, J., Kneschke, EM. et al. Antioxidant Activity and Phenolic Content of Betalain Extracts from Intact Plants and Hairy Root Cultures of the Red Beetroot Beta vulgaris cv. Detroit Dark Red. Plant Foods Hum Nutr 65, 105–111 (2010). https://doi.org/10.1007/s11130-010-0156-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-010-0156-6

Keywords

Navigation