Skip to main content
Log in

Multi-party quantum key agreement with bell states and bell measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

An Erratum to this article was published on 25 July 2012

Abstract

Quantum key agreement protocol is a key establishment technique whereby a classical shared secret key is derived by two or more specified parties equally and fairly based on quantum mechanics principles. In this paper, we presented two novel quantum key agreement protocols for two parties and more parties based on entanglement swapping. The proposed protocols utilize Bell states as the quantum resources, and further perform Bell measurements as the main operations. In addition, they don’t require the help of a trusted center or third party, but could ensure fairness, security and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Diffie W., Hellman M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ingemarsson I., Tang D.T., Wong C.K.: A conference key distribution system. IEEE Trans. Inf. Theory 28, 714–719 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In: Advances in Cryptology—EUROCRYPT 1994, Lecture Notes in Computer Science, vol. 950, pp. 275–286 (1994)

  4. Steiner M., Tsudik G., Waidner M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)

    Article  MATH  Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. Los Alamitos (1994)

  6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Proceedings of 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219. Philadelphia (1996)

  7. Zhou N., Zeng G., Xiong J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  Google Scholar 

  8. Tsai, C.W., Hwang, T.: On quantum key agreement protocol. Technical Report C-S-I-E, NCKU, Taiwan (2009)

  9. Chong S.K., Hwang T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on 290 Computers, Systems and Signal Processing, pp. 175–179. IEEE, Bangalore (1984)

  11. Wang T.Y., Wen Q.Y., Chen X.B. et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)

    Article  ADS  Google Scholar 

  12. Sun Y., Wen Q.Y., Gao F. et al.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  13. Shi R.H., Zhong H.: Multiparty quantum secret sharing with the pure entangled two-photon states. Quantum Inf. Process. 11, 161–169 (2012)

    Article  MathSciNet  Google Scholar 

  14. Shi R.H., Huang L.S., Yang W., Zhong H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  Google Scholar 

  15. Shi R.H., Huang L.S., Yang W., Zhong H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10, 53–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao F., Qin S.J., Wen Q.Y., Zhu F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  18. Lin S. et al.: Comment on multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. Lin S. et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553–4554 (2008)

    Article  ADS  Google Scholar 

  20. Gao F. et al.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  21. Song T. et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333–1337 (2009)

    Article  ADS  Google Scholar 

  22. Guo F.Z. et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445–448 (2010)

    Article  ADS  Google Scholar 

  23. Wang T.Y. et al.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65–68 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Hua Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, RH., Zhong, H. Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf Process 12, 921–932 (2013). https://doi.org/10.1007/s11128-012-0443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0443-2

Keywords

Navigation