Skip to main content
Log in

Hybrid complexes of photosynthetic reaction centers and quantum dots in various matrices: resistance to UV irradiation and heating

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The effects of ultraviolet (UV) irradiation (up to 0.6 J/cm2) and heating (65 °C, 20 min) on the absorption spectra and electron transfer in dehydrated film samples of photosynthetic reaction centers (RCs) from purple bacterium Rhodobacter (Rb.) sphaeroides, as well as in hybrid structures consisting of RCs and quantum dots (QDs), have been studied. The samples were placed in organic matrices containing the stabilizers of protein structure—polyvinyl alcohol (PVA) and trehalose. UV irradiation led to partially irreversible oxidation of some RCs, as well as to transformation of some fraction of the bacteriochlorophyll (BChl) molecules into bacteriopheophytin (BPheo) molecules. In addition, UV irradiation causes degradation of some BChl molecules that is accompanied by formation of 3-acetyl-chlorophyll a molecules. Finally, UV irradiation destroys the RCs carotenoid molecules. The incorporation of RCs into organic matrices reduced pheophytinization. Trehalose was especially efficient in reducing the damage to the carotenoid and BChl molecules caused by UV irradiation. Hybrid films containing RC + QD were more stable to pheophytinization upon UV irradiation. However, the presence of QDs in films did not affect the processes of carotenoid destruction. The efficiency of the electronic excitation energy transfer from QD to P865 also did not change under UV irradiation. Heating led to dramatic destruction of the RCs structure and bacteriochlorins acquired the properties of unbound molecules. Trehalose provided strong protection against destruction of the RCs and hybrid (RC + QD) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RC:

Reaction center

QD:

Quantum dot

BChl:

Bacteriochlorophyll

BPheo:

Bacteriopheophytin

P865:

Photoactive dimer of BChl

UV:

Ultraviolet

PVA:

Polyvinyl alcohol

P865+ :

Photooxidized dimer of BChl

Q A and Q B :

Primary and secondary quinone acceptors

Rb. sphaeroides :

Purple bacteria Rhodobacter sphaeroides

References

  • Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003) Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49

    Article  CAS  PubMed  Google Scholar 

  • Čejková J, Čejka Č, Ardan T, Širc J, Michálek J, Luyckx J (2010) Reduced UVB-induced corneal damage caused by reactive oxygen and nitrogen species and decreased changes in corneal optics after trehalose treatment. Histol Histopathol 25:1403–1416

    PubMed  Google Scholar 

  • Chen G, Djuric Z (2001) Carotenoids are degraded by free radicals but do not affect lipid peroxidation in unilamellar liposomes under different oxygen tensions. FEBS Lett 505:151–154

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li M, Li L, Xu S, Huang D, Ju M, Huang Y, Chen K, Gu H (2016) Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci Rep 6:28423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton RK (1978) Effects of dehydration on reaction centers from Rps. sphaeroides. Biochim Biophys Acta 504:255–264

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  • D’Alfonso L, Collini M, Cannone F, Chirico G, Campanini B, Cottone G, Cordone L (2007) GFP-mut2 proteins in trehalose-water matrixes: spatially heterogeneous protein-water-sugar structures. Biophys J 93:284–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Las Rivas J, Barber J (1997) Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 36:8897–8903

    Article  PubMed  Google Scholar 

  • Francia F, Palazzo G, Mallardic A, Cordoned L, Venturoli G (2004) Probing light-induced conformational transitions in bacterial photosynthetic reaction centers embedded in trehalose–water amorphous matrices. Biochim Biophys Acta 1658:50–57

    Article  CAS  PubMed  Google Scholar 

  • Gast P, Hemelrijk PW, Van Gorkom HJ, Hoff AJ (1996) The association of different detergents with the photosynthetic reaction center protein of Rhodobacter sphaeroides R26 and the effects on its photochemistry. Eur J Biochem 239:805–809

    Article  CAS  PubMed  Google Scholar 

  • Gingras G (1978) A comparative review of photochemical reaction center preparations from photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 119–131

    Google Scholar 

  • Giuffrida S, Cottone G, Cordone L (2004) Structure—dynamics coupling between protein and external matrix in sucrose-coated and in trehalose-coated MbCO: an FTIR study. J Phys Chem B 108:15415–15421

    Article  CAS  Google Scholar 

  • Hughes AV, Rees P, Heathcote P, Jones MR (2006) Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides. Biophys J 90:4155–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AG, Miskiewicz E, Clarke AK, Greenberg BM, Huner NPA (2000) Protection of photosystem II against UV-A and UV-B-radiation in the cyanobacterium Plectonema boryanum: the role of growth temperature and growth irradiance. Photochem Photobiol 72:772–779

    Article  CAS  PubMed  Google Scholar 

  • Karpulevich AA, Maksimov EG, Sluchanko NN, Vasiliev AN, Paschenko VZ (2016) Highly efficient energy transfer from quantum dot to allophycocyanin in hybrid structures. J Photochem Photobiol B 160:96–101

    Article  CAS  PubMed  Google Scholar 

  • Karpulevich AA, Maksimov EG, Gorokhov VV, Churin AA, Ivanov MV, Paschenko VZ (2017) Covalently linked hybrid structures of semiconductor nanocrystals and allophycocyanin. Nanotechnol Russ 12:98–106

    Article  CAS  Google Scholar 

  • Knox PP, Kononenko AA, Rubin AB (1979) Functional activity in photosynthetic reaction centers from Rhodopseudomonas sphaeroides at fixed hydration levels of the preparations. Bioorganic Chem (USSR) 5:879–885

    CAS  Google Scholar 

  • Knox PP, Lukashev EP, Timofeev KN, Seifullina NK (2002) Effects of oxygen on the dark recombination between photoreduced secondary quinone and oxidized bacteriochlorophyll in Rhodobacter sphaeroides reaction centers. Biochemistry 67:901–907

    CAS  PubMed  Google Scholar 

  • Konov KB, Isaev NP, Dzuba SA (2014) Low-temperature molecular motions in lipid bilayers in the presence of sugars: insights into cryoprotective mechanisms. J Phys Chem B 118:12478–12485

    Article  CAS  PubMed  Google Scholar 

  • Kotakis C, Akhtar P, Zsiros O, Garab G, Lambrey PH (2018) Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica 56:254–264

    Article  CAS  Google Scholar 

  • Lancaster CRD, Michel H, Honig B, Gunner MR (1996) Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. Biophys J 70:2469–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leatherdale CA, Woo WK, Mikulec FV, Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 106:7619–7622

    Article  CAS  Google Scholar 

  • Lukashev EP, Knox PP, Gorokhov VV, Grishanova NP, Seifullina NK, Krikunova M, Lokstein H, Paschenko VZ (2016a) Purple bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films. J Photochem Photobiol B 164:73–82

    Article  CAS  PubMed  Google Scholar 

  • Lukashev EP, Knox PP, Oleinikov IP, Seifullina NK, Grishanova NP (2016b) Investigation of stability of photosynthetic reaction center and quantum dot hybrid films. Biochemistry 81:58–63

    CAS  PubMed  Google Scholar 

  • Makhneva ZK, Ashikhmin AA, Bolshakov MA, Moskalenko AA (2016) 3-Acetyl-chlorophyll formation in light-harvesting complexes of purple bacteria by chemical oxidation. Biochemistry 81:176–186

    CAS  PubMed  Google Scholar 

  • Maksimov EG, Gostev TS, Kuz’minov FI, Sluchanko NN, Stadnichuk IN, Pashchenko VZ, Rubin AB (2010) Hybrid systems of quantum dots mixed with the photosensitive protein phycoerythrin. Nanotechnol Russ 5:531–537

    Article  Google Scholar 

  • Malferrari M, Savitsky A, Mamedov MD, Milanovsky GE, Lubitz W, Möbius K, Semenov AY, Venturoli G (2016) Trehalose matrix effects on charge-recombination kinetics in рhotosystem I of oxygenic photosynthesis at different dehydration levels. Biochim Biophys Acta 1857:1440–1454

    Article  CAS  PubMed  Google Scholar 

  • McConnell I, Li G, Brudvig GW (2010) Energy conversion in natural and artificial photosynthesis. Chem Biol 17:434–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miksovska J, Maroti P, Tandori J, Schiffer M, Hanson DK, Sebban P (1996) Distant electrostatic interactions modulate the free energy level of QA in the photosynthetic reaction center. Biochemistry 35:15411–15417

    Article  CAS  PubMed  Google Scholar 

  • Nabiev I, Rakovich A, Sukhanova A, Lukashev E, Zagidullin V, Paschenko V, Rakovich Y, Donegan J, Rubin A, Govorov A (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew Chem Int Ed 49:7217–7221

    Article  Google Scholar 

  • Okamura MY, Feher G (1992) Proton transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochem 61:861–896

    Article  CAS  PubMed  Google Scholar 

  • Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta 1458:148–163

    Article  CAS  PubMed  Google Scholar 

  • Oleynikov VA, Sukhanova AV, Nabiev IR (2007) Fluorescent semiconductor nanocrystals for biology and medicine. Russ Nanotechnol 2:160–173

    Google Scholar 

  • Olsson C, Jansson H, Swenson J (2016) The role of trehalose for the stabilization of proteins. J Phys Chem B 120:4723–4731

    Article  CAS  PubMed  Google Scholar 

  • Ormerod JG, Ormerod KS, Gest H (1961) Dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; Relationships with nitrogen metabolism. Arch Biochem Biophys 94:449–463

    Article  CAS  PubMed  Google Scholar 

  • Palazzo G, Mallardi A, Hochkoeppler A, Cordone L, Venturoli G (2002) Electron transfer kinetics in photosynthetic reaction centers embedded in trehalose glasses: trapping of conformational substates at room temperature. Biophys J 82:558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabenstein B, Ullmann GM, Knapp EW (2000) Electron transfer between the quinones in the photosynthetic reaction center and its coupling to conformational changes. Biochemistry 39:10487–10496

    Article  CAS  PubMed  Google Scholar 

  • Razjivin AP, Lukashev EP, Kompanets VO, Kozlovsky VS, Ashikhmin AA, Chekalin SV, Moskalenko AA, Paschenko VZ (2017) Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible. Photosynth Res 133:289–295

    Article  CAS  PubMed  Google Scholar 

  • Reed DW, Peters GA (1972) Characterization of the pigments in reaction center preparations from Rhodopseudomonas sphaeroides. J Biol Chem 247:7148–7152

    CAS  PubMed  Google Scholar 

  • Tandori J, Mate Z, Maroti P, Vass I (1996) Resistance of reaction centers from Rhodobacter sphaeroides against UV-B radiation. Effects on protein structure and electron transport. Photosynth Res 50:171–179

    Article  CAS  PubMed  Google Scholar 

  • Tokaji Z, Tandori J, Maroti P (2002) Light- and redox-dependent thermal stability of the reaction center of the photosynthetic bacterium Rhodobacter sphaeroides. Photochem Photobiol 75:605–612

    Article  CAS  PubMed  Google Scholar 

  • Uchoa AF, Knox PP, Turchielle R, Seifullina NK, Baptista MS (2008) Singlet oxygen generation in the reaction centers of Rhodobacter sphaeroides. Eur Biophys J 37:843–850

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Sass L, Spetea C, Bakou A, Ghanotakis DF, Petrouleas V (1996) UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry 35:8964–8973

    Article  CAS  PubMed  Google Scholar 

  • Williams W, Gounaris K (1992) Stabilisation of PS-II-mediated electron transport in oxygen-evolving PS II core preparations by the addition of compatible co-solutes. Biochim Biophys Acta 1100:92–97

    Article  CAS  PubMed  Google Scholar 

  • Zacharie U, Lancaster CRD (2001) Proton uptake associated with the reduction of the primary quinone QA influences the binding site of the secondary quinone QB in Rhodopseudomonas viridis photosynthetic reaction centers. Biochim Biophys Acta 1505:280–290

    Article  Google Scholar 

  • Zagidullin VE, Lukashev EP, Knox PP, Seifullina NK, Sokolova OS, Pechnikova EV, Lokstein H, Paschenko VZ (2014) Properties of hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes. Biochemistry 79:1183–1191

    CAS  PubMed  Google Scholar 

  • Zakharova NI, Churbanova IY (2000) Methods for isolating reaction center preparations from purple photosynthetic bacteria. Biochemistry 65:181–193

    Google Scholar 

  • Zhang G, Zhu B, Nakamura Y, Shimoishi Y, Murata Y (2008) Structure-dependent photodegradation of carotenoids accelerated by dimethyl tetrasulfide under UVA irradiation. Biosci Biotechnol Biochem 72:2176–2183

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Liu F-F, Dong X-Y, Sun Y (2012) Molecular insight into the counteraction of trehalose on urea-induced protein denaturation using molecular dynamics simulation. J Phys Chem B 116:7040–7047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Foundation for Basic Research (Project No. 15-29-01167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Z. Paschenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knox, P.P., Lukashev, E.P., Gorokhov, V.V. et al. Hybrid complexes of photosynthetic reaction centers and quantum dots in various matrices: resistance to UV irradiation and heating. Photosynth Res 139, 295–305 (2019). https://doi.org/10.1007/s11120-018-0529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0529-5

Keywords

Navigation