Skip to main content
Log in

Ca2+-binding reduces conformational flexibility of RC–LH1 core complex from thermophile Thermochromatium tepidum

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The light-harvesting complex, LH1, of thermophile purple bacteria Thermochromatium tepidum consists of an array of α- and β-polypeptides which assemble the photoactive bacteriochlorophyll and closely interact with the membrane-lipids. In this study, we investigated the effect of calcium and manganese ions on the protein structure and thermostability of the reaction centre (RC)–LH1/lipid complex. The binding of Ca2+, but not Mn2+ is shown to shift the LH1 Q y absorption maximum from ~889 to 915 nm and to significantly raise the thermostability of the RC–LH1 complex. The ATR–FTIR spectra indicate that interaction of Ca2+ as monitored by the carboxylates’ vibration of aspartate residues, but not Mn2+ induces changes in the α-helix packing arrangement. The reduced rate of 1H/2H exchange of proteins’ amide protons shows that the accessibility to 2H2O is significantly lowered in Ca2+-substituted RC–LH1/lipid complexes. In particular, exchange with the associated lipid molecules, is significantly retarded. These results suggest that the thermostability of the RC–LH1 complex is raised by the distinct interaction with calcium cations which reduces the RC–LH1/lipid dynamics, particularly, at the membrane–water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TM:

Transmembrane

BChl:

Bacteriochlorophyll

LH:

Light-harvesting

WT:

Wild type

ATR:

Attenuated reflection

FTIR:

Fourier transform infrared

TCh:

Thermochromatium

R:

Rhodobacter

Rss:

Roseospirillum

Rps:

Rhodospirillum

References

  • Blume A, Hubner W, Messner G (1988) Fourier transform infrared spectroscopy of 13C=O-labeled phospholipids: hydrogen bonding to carbonyl groups. Biochemistry 27:8239–8249

    Article  PubMed  CAS  Google Scholar 

  • Braun P, Fiedor L (2009) Design and assembly of functional light harvesting complexes. In: Hunter NC, Daldal F, Thurnauer M C, Beatty T (eds) The purple photosynthetic bacteria. Advances in photosynthesis and respiration, Govindjee (ed), Springer, Dordrecht, pp 913–940

  • Braun P, Goldberg E, Negron C, von Jan M, Xu F, Nanda V, Koder R, Noy D (2011) Design principles for chlorophyll binding sites in helical proteins. Proteins 79:463–476

    Article  PubMed  CAS  Google Scholar 

  • Braun P, Vegh AP, von Jan M, Strohmann B, Hunter CN, Robert B, Scheer H (2003) Identification of intramembrane hydrogen bonding between 13(1) keto group of bacteriochlorophyll and serine residue alpha27 in the LH2 light-harvesting complex. Biochim Biophys Acta 1607:19–26

    Google Scholar 

  • Byler M, Farrel HM Jr (1989) Infrared spectroscopic evidence for calcium ion interaction with carboxylate groups of casein. J Dairy Sci 72:1719–1723

    Article  CAS  Google Scholar 

  • Cambillau C, Claverie JM (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem 275:32383–32386

    Article  PubMed  CAS  Google Scholar 

  • Conzen JP (2006) Multivariate calibration: a practical guide for developing methods in the quantitative analytical chemistry. 2nd English edn. Bruker Optics, Ettlingen

  • Dezi A, Francia F, Mallardi A, Colafemmina G, Palazzo G, Venturosi G (2007) Stabilization of charge separation and cardiolipin confinement in antenna–reaction centre complexes purified from Rhodobacter sphaeroides. Biochim Biophys Acta 1767:1041–1056

    Article  PubMed  CAS  Google Scholar 

  • Fathir I, Ashikaga M, Tanaka K, Katano T, Nirasawa T, Kobayashi M, Wang Z-Y, Nozawa T (1998) Biochemical and spectral characterization of the core light harvesting complex 1 (LH1) from the thermophile purple sulphur bacterium Chromatium tepidum. Photosynth Res 58:193–202

    Article  CAS  Google Scholar 

  • Fathir I, Mori T, Nogi T, Kobayashi M, Miki T, Nozawa K (2001) Structure of the H subunit of the photosynthetic reaction centre from the thermophile purple sulphur bacterium Thermochromatium tepidum. Implications for the specific binding of the lipid molecule to the membrane protein complex. Eur J Biochem 268:2652–2657

    Article  PubMed  CAS  Google Scholar 

  • Fowler GJ, Sockalingum GD, Robert B et al (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at alpha-Tyr-44 and alpha-Tyr-45. Biochem J 299:695–700

    PubMed  CAS  Google Scholar 

  • Garcia D, Parot P, Vermeglio A, Madigan MT (1986) The light-harvesting complexes of a thermophile purple sulphur photosynthetic bacterium Chromatium tepidum. Biochim Biophys Acta 850:390–395

    Article  CAS  Google Scholar 

  • Glaeser J, Overmann J (1999) Selective enrichment and characterization of Roseospirillum parvum, gen. nov and sp. 197 nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171:405–416

    Article  PubMed  CAS  Google Scholar 

  • Gregory DS, Martin ACR, Cheetham JC, Rees AR (1993) The prediction and characterization of metal binding sites in proteins. Protein Eng 6:29–35

    Article  PubMed  CAS  Google Scholar 

  • Holt AS, Jacobs EE (1955) Infra-red absorption spectra of chlorophylls and derivatives. Plant Physiol 30:553–559

    Article  PubMed  CAS  Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Invernizzi G, Papaleo E, Grandori R, De Gioia L, Lotti M (2009) Relevance of metal ions for lipase stability: structural rearrangements induced in the Burkholderia glumae lipase by calcium depletion. J Struct Biol. doi:10.1016/j.jsb.2009.07.021

  • Ishikawa K, Nakamura H, Morikawa K, Kanaya S (1993) Stabilization of Escherichia coli ribonuclease HI by cavity-filling mutations within a hydrophobic core. Biochemistry 32:6171–6178

    Article  PubMed  CAS  Google Scholar 

  • Ishimura M, Honda S, Uedaira H, Odahara T, Miyake J (1995) Thermal denaturation of photosynthetic membrane proteins from Rhodobacter sphaeroides. Thermochim Acta 266:355–364

    Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46:56–87

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Hirano Y, Yu L-J, Suzuki H, Kobayashi M, Wang Z-Y (2008) Calcium ions are involved in the unusual red shift of the light-harvesting 1 Q y transition of the core complex in thermophile purple sulphur bacterium Thermochromatium tepidum. J Biol Chem 283:13867–13873

    Google Scholar 

  • Kimura Y, Yu L-J, Hirano Y, Suzuki H, Wang Z-Y (2009) Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction centre core complex from thermophile purple sulphur bacterium Thermochromatium tepidum. J Biol Chem 284:93–99

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Inada Y, Yu L-J, Wang Z-Y, Ohno T (2011) A spectroscopic variant of the light-harvesting 1 core complex from the thermophile purple sulphur bacterium Thermochromatium tepidum. Biochemistry 50:3638–3648

    Article  PubMed  CAS  Google Scholar 

  • Kwa LG, Garcia-Martinez A, Vegh AP, Strohmann B, Robert B, Braun P (2004) H-bonding in a model bacteriochlorophyll binding site drives assembly of light harvesting complex. J Biol Chem 279:15067–15075

    Article  PubMed  CAS  Google Scholar 

  • Kwa LG, Wegmann D, Brügger B, Wieland F, Wanner G, Braun P (2008) Mutation of a single residue, glutamate β10, alters protein-lipid interactions of light harvesting complex II. Mol Microbiol 67:63–77

    PubMed  CAS  Google Scholar 

  • Lafrance C-P, Blochet J-E, Pezolet M (1997) N-Acylphosphatidylethanolamines: effect of the N-Acyl chain length on its orientation. Biophys J 72:2559–2568

    Google Scholar 

  • Lewis AH, McElhaney RN, Pohle W, Mantsch HH (1994) Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers. a re-evaluation. Biophys J 67:2367–2375

    Article  PubMed  CAS  Google Scholar 

  • Liang ZX, Tsigos J, Lee T, Bouriotis V, Resing KA, Ahn NG, Klinmann JP (2004) Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophile homologue. Biochemistry 43:14676–14683

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Kimura Y, Yu L-J, Wang PA, Wang Z-Y, Zhang J-P (2009) Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling. FEBS J 276:1739–1749

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225:313–315

    Article  PubMed  CAS  Google Scholar 

  • Marsh D, Horvath LI (1998) Structure, dynamics and composition of the lipid–protein interface. Perspectives from spin-labelling. Biochim Biophys Acta 1376:267–296

    PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless A, Papiz MZ, Cogdell R (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  • Nara M, Tanokura M (2008) Infrared spectroscopic study of the metal coordination structures of calcium-binding proteins. Biochim Biophys Res Commun 369:225–239

    Article  CAS  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000) Crystal structures of photosynthetic reaction centre and high-potential iron-sulfur protein from Thermochromatium tepidum; thermostability and electron transfer. Proc Natl Acad Sci USA 97:13561–13566

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydr Res 345:469–473

    Article  PubMed  CAS  Google Scholar 

  • Permentier HP, Neerken S, Overmann J, Amesz J (2001) A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40:5573–5578

    Article  PubMed  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC–LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Article  PubMed  CAS  Google Scholar 

  • Scheuring S, Sturgis JN (2009) Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. Photosynth Res 102:197–211

    Article  PubMed  CAS  Google Scholar 

  • Sener MK, Olsen JD, Hunter CN, Schulten K (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci USA 104:15723–15728

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Silber MV, Gabriel G, Strohmann B, Garcia-Martin A, Robert B, Braun P (2008) Fine tuning of the spectral properties of LH2 by single amino acid residues. Photosynth Res 96:145–151

    Article  PubMed  CAS  Google Scholar 

  • Sturgis J, Robert B, Goormaghtigh E (1998) Transmembrane helix stability: the effect of helix–helix interactions studied by Fourier transform infrared spectroscopy. Biophys J 74:988–994

    Article  PubMed  CAS  Google Scholar 

  • Sturgis JN, Tucker JD, Olsen JD, Hunter CN, Niederman RA (2009) Atomic force microscopy studies of native photosynthetic membranes. Biochemistry 48:3679–3698

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Hirano Y, Kimura Y, Takaichi S, Kobayashi, Miki MK, Wang Z-Y (2007) Purification, characterization and crystallization of the core complex from thermophile purple sulphur bacterium Thermochromatium tepidum. Biochim Biophys Acta 1767:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Tuschak C, Beatty JT, Overmann J (2004) Photosynthesis genes and LH1 proteins of Roseospirillum parvum 930I, a purple non-sulphur bacterium with unusual spectral properties. Photosynth Res 81:181–199

    Article  CAS  Google Scholar 

  • Vigano C, Smeyers M, Raussens V, Scheirlinck F, Ruysschaert JM, Goormaghtigh E (2003) Hydrogen–deuterium exchange in membrane proteins monitored by IR spectroscopy: a new tool to resolve protein structure and dynamics. Wiley InterScience. doi:10.1002/bip.20035

  • Wang ZY, Gokan K, Kobayashi M, Nozawa T (2005) Solution structures of the core light-harvesting a and b polypeptides from Rhodospirillum rubrum: implications for the pigment–protein and protein–protein interactions. J Mol Biol 347:465–477

    Article  PubMed  CAS  Google Scholar 

  • Watson AJ, Hughs AV, Fyfe PK, Wakeham MC, Holden-Dye K, Heathcote P, Jones MR (2005) On the role of basic residues in adapting the reaction centre–LH1 complex for growth at elevated temperatures in purple bacteria. Photosynth Res 86:10–81

    Article  Google Scholar 

  • Yu L-J, Kato S, Wang Z-J (2010) Examination of the putative Ca2 + -binding site in the light-harvesting complex 1 of thermophile purple sulphur bacterium Thermochromatium tepidum. Photosynth Res 106:215–220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Prof. Zheng-Yu Wang from the Faculty of Science, Ibaraki University, Mito, Japan for the kindly presenting us with the RC–LH1 samples from TCh. tepidum. P.B. holds a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob-Grun, S., Radeck, J. & Braun, P. Ca2+-binding reduces conformational flexibility of RC–LH1 core complex from thermophile Thermochromatium tepidum . Photosynth Res 111, 139–147 (2012). https://doi.org/10.1007/s11120-012-9727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9727-8

Keywords

Navigation