Skip to main content
Log in

Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ten naturally occurring chlorophylls (a, b, c 2, d) and bacteriochlorophylls (a, b, c, d, e, g) were purified and studied using the optical spectroscopic techniques of both steady state and time-resolved absorption and fluorescence. The studies were carried out at room temperature in nucleophilic solvents in which the central Mg is hexacoordinated. The comprehensive studies of singlet excited state lifetimes show a clear dependency on the structural features of the macrocycle and terminal substituents. The wide-ranging studies of triplet state lifetime demonstrate the existence of an energy gap law for these molecules. The knowledge of the dynamics and the energies of the triplet state that were obtained in other studies allowed us to construct an energy gap law expression that can be used to estimate the triplet state energies of any (B)chlorophyll molecule from its triplet lifetime obtained in a liquid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

(B)Chl:

(Bacterio)chlorophyll

ACN:

Acetonitrile

MeOH:

Methanol

THF:

Tetrahydrofuran

OD:

Optical density

T − S:

Triplet-minus-singlet

FTIR:

Fourier transform infrared spectroscopy

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

ISC:

Intersystem crossing

IC:

Internal conversion

ICCD:

Intensified charge-coupled device

References

  • Alexandre MT, Luhrs DC, van Stokkum IH, Hiller R, Groot ML, Kennis JT, van Grondelle R (2007) Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs? Biophys J 93:2118–2128

    Article  CAS  PubMed  Google Scholar 

  • Andersson PO, Gillbro T (1995) Photophysics and dynamics of the lowest excited singlet state in long substituted polyenes with implications to the very long chain limit. J Chem Phys 103:2509–2519

    Article  CAS  Google Scholar 

  • Avarmaa R, Soovik T, Tamkivi R, Tonissoo V (1977) Fluorescence lifetimes of chlorophyll a and some related compounds at low temperatures. Stud Biophys 65:213–218

    CAS  Google Scholar 

  • Blankenship RE, Matsuura C (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis, Advances in photosynthesis and respiration, vol 13. Kluwer Academic Publishers, Dordrecht, pp 195–217

  • Breton J, Nabedryk E, Leibl W (1999) FTIR study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700(+) and localization of the triplet character in (3)P700. Biochemistry 38:11585–11592

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Costas AM, Maresca JA, Chew AG, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526

    Google Scholar 

  • Budil DE, Thurnauer MC (1991) The chlorophyll triplet state as a probe of structure and function in photosynthesis. Biochim Biophys Acta 1057:1–41

    Article  CAS  PubMed  Google Scholar 

  • Chynwat V, Frank HA (1995) The application of the energy gap law to the S1 energies and dynamics of carotenoids. Chem Phys 194:237–244

    Article  CAS  Google Scholar 

  • Clarke RH, Connors RE, Schaafsma TJ, Kleibeuker JF, Platenkamp RJ (1976) The triplet state of chlorophylls. J Am Chem Soc 98:3674–3677

    Article  CAS  Google Scholar 

  • Cong H, Niedzwiedzki DM, Gibson GN, Frank HA (2008) Ultrafast time-resolved spectroscopy of xanthophylls at low temperature. J Phys Chem B 112:3558–3567

    Article  CAS  PubMed  Google Scholar 

  • Connolly JS, Gorman DS, Seely GR (1973) Laser flash-photolysis studies of chlorin and porphyrin systems. 1. Energetics of triplet state of bacteriochlorophyll. Ann N Y Acad Sci 206:649–669

    Article  CAS  PubMed  Google Scholar 

  • Connolly JS, Janzen AF, Samuel EB (1982a) Fluorescence lifetimes of chlorophyll a—solvent, concentration and oxygen dependence. Photochem Photobiol 36:559–563

    Article  CAS  Google Scholar 

  • Connolly JS, Samuel EB, Janzen AF (1982b) Effects of solvent on the fluorescence properties of bacteriochlorophyll a. Photochem Photobiol 36:565–574

    Article  CAS  Google Scholar 

  • Drzewiecka-Matuszek A, Skalna A, Karocki A, Stochel G, Fiedor L (2005) Effects of heavy central metal on the ground and excited states of chlorophyll. J Biol Inorg Chem 10:453–462

    Article  CAS  PubMed  Google Scholar 

  • Englman R, Jortner J (1970) Energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164

    Article  CAS  Google Scholar 

  • Fujimori E, Livingston R (1957) Interactions of chlorophyll in its triplet state with oxygen, carotene, etc. Nature 180:1036–1038

    Article  CAS  Google Scholar 

  • Gouterman M (1959) Study of the effects of substitution on the absorption spectra of porphin. J Chem Phys 30:1139–1161

    Article  CAS  Google Scholar 

  • Gouterman M (1961) Spectra of porphyrins. J Mol Spec 6:138–163

    Article  CAS  Google Scholar 

  • Gouterman M (1978) Optical spectra and electronic structure of porphyrins and related rings. In: Dolphin D (ed) Physical chemistry, part A, the porphyrins. Academic Press, New York, pp 1–166

    Google Scholar 

  • Grimm B, Porra RJ, Rudiger W, Scheer H (2006) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics functions, and applications. Springer, Dordrecht

    Google Scholar 

  • Kaligotla S, Doyle S, Niedzwiedzki DM, Hasegawa S, Kajikawa T, Katsumura S, Frank HA (2010) Triplet state spectra and dynamics of peridinin analogs having different extents of π-electron conjugation. Photosynth Res 103:167–174

    Article  CAS  PubMed  Google Scholar 

  • Kee HL, Kirmaier C, Tang Q, Diers JR, Muthiah C, Taniguchi M, Laha JK, Ptaszek M, Lindsey JS, Bocian DF, Holten D (2007a) Effects of substituents on synthetic analogs of chlorophylls. Part 1: synthesis, vibrational properties and excited-state decay characteristics. Photochem Photobiol 83:1110–1124

    Article  CAS  PubMed  Google Scholar 

  • Kee HL, Kirmaier C, Tang Q, Diers JR, Muthiah C, Taniguchi M, Laha JK, Ptaszek M, Lindsey JS, Bocian DF, Holten D (2007b) Effects of substituents on synthetic analogs of chlorophylls. Part 2: redox properties, optical spectra and electronic structure. Photochem Photobiol 83:1125–1143

    Article  CAS  PubMed  Google Scholar 

  • Kleibeuker JF, Platenkamp RJ, Schaafsma TJ (1978) Triplet state of photosynthetic pigments. 1. Pheophytins. Chem Phys 27:51–64

    Article  CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Watanabe T, Kano H (1999) Exotic chlorophylls as key components of photosynthesis. Curr Top Plant Biol 1:17–35

    CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Kano H, Kise H (2006) Spectroscopy and structure determination. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, advances in photosynthesis and respiration. Springer, Dordrecht, pp 79–94

    Google Scholar 

  • Krasnovsky AA, Cheng P, Blankenship RE, Moore TA, Gust D (1993) The photophysics of monomeric bacteriochlorophylls c and bacteriochlorophylls d and their derivatives—properties of the triplet state and singlet oxygen photogeneration and quenching. Photochem Photobiol 57:324–330

    Article  CAS  PubMed  Google Scholar 

  • Livingston R (1955) Preliminary study of a metastable form of chlorophyll in fluid solutions. J Am Chem Soc 77:2179–2182

    Article  CAS  Google Scholar 

  • Mathis P, Setif P (1981) Near-infrared absorption spectra of the chlorophyll a cations and triplet state in vitro and in vivo. Isr J Chem 21:316–320

    CAS  Google Scholar 

  • Natarajan LV, Ricker JE, Blankenship RE, Chang R (1984) Solvent influences on the singlet quenching of chlorophyll a by 2,5-dimethyl-para-benzoquinone. Photochem Photobiol 39:301–306

    Article  CAS  Google Scholar 

  • Niedzwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson GN, Birge RR, Frank HA (2007) Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 111:5984–5998

    Article  CAS  PubMed  Google Scholar 

  • Niedzwiedzki DM, Enriquez MM, LaFountain AM, Frank HA (2010) Ultrafast time-resolved absorption spectroscopy of geometric isomers of xanthophylls. Chem Phys 373:80–89

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Inoue Y, Satoh K (1993) FT-IR studies on the triplet state of P680 in the photosystem II reaction center: triplet equilibrium within a chlorophyll dimer. Biochemistry 32:7186–7195

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Tomo T, Kato C (2001) Triplet formation on a monomeric chlorophyll in the photosystem II reaction center as studied by time-resolved infrared spectroscopy. Biochemistry 40:2176–2185

    Article  CAS  PubMed  Google Scholar 

  • Pelletier PJ, Caventou JB (1818) Sur la matière verte des feuilles. Ann Chim Phys 9:194–196

    Google Scholar 

  • Scheer H (1991) Chlorophylls. CRC Press, Boca Raton

    Google Scholar 

  • Seely GR, Connolly JS (1986) Fluorescence of photosynthetic pigments in vitro. In: Govinjee JA, Fork DC (eds) Light emission by plants and bacteria, cell biology: a series of monographs. Academic Press, London, pp 99–133

    Google Scholar 

  • Staskowiak E, Dudkowiak A (2005) Photostability and the yield of triplet state generation of bacteriochlorophyll c and bacteriopheophytin c in solution. Spectrochim Acta A 61:2033–2039

    Article  Google Scholar 

  • Takiff L, Boxer SG (1988) Phosphorescence spectra of bacteriochlorophylls. J Am Chem Soc 110:4425–4426

    Article  CAS  Google Scholar 

  • Weiss C (1972) The Pi electron structure and absorption spectra of chlorophylls in solution. J Mol Spec 44:37–80

    Article  CAS  Google Scholar 

  • Zapata M, Garrido J, Jeffrey SW (2006) Chlorophyll c pigments: current status. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics function and applications, advances in photosynthesis and respiration. Springer, Dordrecht, pp 39–53

    Google Scholar 

Download references

Acknowledgments

This research is from the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the DOE, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035. We thank Prof. Dewey Holten for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Blankenship.

Electronic supplementary material

Dependency of the triplet state lifetime of BChl c as a function of the number of freeze-pump-thaw cycles (Fig. S1) and digitized datasets (in columns) of absorption (expressed in molar extinction), fluorescence and T-S spectra of all 10 studied molecules.

Supplementary material 1 (PDF 3383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedzwiedzki, D.M., Blankenship, R.E. Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106, 227–238 (2010). https://doi.org/10.1007/s11120-010-9598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9598-9

Keywords

Navigation