Skip to main content
Log in

Selenium uptake, translocation, assimilation and metabolic fate in plants

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APR:

APS reductase

APS:

adenosine 5'-phosphosulfate

APSe:

adenosine 5'-phosphoselenate

CGS:

cystathionine-γ-synthase

Cys:

cysteine

Cysth:

cystathionine

DMS:

dimethylsulfide

DMSe:

dimethylselenide

DMDSe:

dimethyldiselenide

DMSeP:

dimethylselenoniopropionate

GGMeCys:

γ-glutamyl-S-methylcysteine

GGMeSeCys:

γ-glutamyl-Se-methylselenocysteine

GPX:

glutathione peroxidase

GSH:

glutathione

HMT:

homocysteine methyltransferase

Hocys:

homocysteine

MeCys:

S-methylcysteine;

MeSeCys:

Se-methylselenocysteine

Met:

methionine

MMT:

S-adenosyl-L-methionine-L-methionine S-methyltransferase

OAS:

O-acetyl-L-serine

OAS-TL:

OAS thiol-lyase

S:

sulfur

SAT:

serine acetyltransferase

Se:

selenium

SECIS:

SeCys insertion sequence

SeCys:

selenocysteine

Secysth:

selenocystathionine

Sehocys:

selenohomocysteine

SeMet:

selenomethionine

SMM:

S-methylmethionine

SMT:

selenocysteine methyltransferase

References

  • MM Abrams, RG Burau and RJ Zasoski, Organic selenium distribution in selected california soils. Soil Sci Soc Am J 54 (1990) 979-982

    Article  CAS  Google Scholar 

  • J Aketagawa and G Tamura, Ferredoxin-sulfite reductase from spinach. Agric Biol Chem 44 (1980) 2371-2378

    CAS  Google Scholar 

  • JH Ansede, PJ Pellechia and DC Yoch, Selenium biotransformation by the salt marsh cordgrass Spartina alterniflora: evidence for dimethylselenoniopropionate formation. Environ Sci Technol 33 (1999) 2064-2069

    Article  CAS  Google Scholar 

  • K Asada and K Kiso, Initiation of aerobic oxidation of sulfite by illuminated spinach-chloroplasts. Eur J Biochem 33 (1973) 253-257

    Article  PubMed  CAS  Google Scholar 

  • CJ Asher, GW Butler and PJ Peterson, Selenium transport in root systems of tomato. J Exp Bot 28 (1977) 279-291

    CAS  Google Scholar 

  • L Banszky, T Simonics and A Maraz, Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants. J Gen Appl Microbiol 49 (2003) 271-278

    Article  PubMed  CAS  Google Scholar 

  • GS Bañuelos, The green technology of selenium phytoremediation. Biofactors 14 (2001) 255-260

    PubMed  Google Scholar 

  • GS Bañuelos, HA Ajwa, B Mackey, L Wu, C Cook, S Akohoue and S Zambruzuski, Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26 (1997) 639-646

    Google Scholar 

  • OA Beath, The occurrence of selenium and seleniferous vegetation in Wyoming. II seleniferous vegetation. Wyoming Agric Exper Stn Bull 221 (1937) 29-64

    Google Scholar 

  • OA Beath, JH Draize, HF Eppson, CS Gilbert and OC McCreary, Certain poisonous plants of Wyoming activated by selenium and their association with respect to soil types. J Am Pharm Soc 23 (1934) 94

    CAS  Google Scholar 

  • PF Bell, DR Parker and AL Page, Contrasting selenate sulfate interaction in selenium accumulating and nonaccumulating plant species. Soil Sci Soc Am J 56 (1992) 1818-1824

    Article  CAS  Google Scholar 

  • NJ Benevenga, Occurrence and metabolism of S-methyl-L-cysteine and S-methyl-L-cysteine sulfoxide in plants and their toxicity and metabolism in animals. In: PR Cheeke (ed.) Toxicants of Plant Origin,. Boca Raton, FL: CRC Press (1989) pp. 203-228

    Google Scholar 

  • A Berken, MM Mulholland, DL LeDuc and N Terry, Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21 (2002) 567-582

    Article  CAS  Google Scholar 

  • O Berkowitz, M Wirtz, A Wolf, J Kuhlmann and R Hell, Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem 277 (2002) 30629-30634

    Article  PubMed  CAS  Google Scholar 

  • MJ Berry, RM Tujebajeva, PR Copeland, XM Xu, BA Carlson, GW Martin, SC Low, JB Mansell, E Grundner-Culemann, JW Harney, DM Driscoll and DL Hatfield, Selenocysteine incorporation directed from the 3'UTR: characterization of eukaryotic EFsec and mechanistic implications. Biofactors 14 (2001) 17-24

    PubMed  CAS  Google Scholar 

  • JA Bick, AT Setterdahl, DB Knaff, Y Chen, LH Pitcher, BA Zilinskas and T Leustek, Regulation of the plant-type 5'-adenylyl sulfate reductase by oxidative stress. Biochemistry 40 (2001) 9040-9048

    Article  PubMed  CAS  Google Scholar 

  • M Birringer, S Pilawa and L Flohe, Trends in selenium biochemistry. Nat Prod Rep 19 (2002) 693-718

    PubMed  CAS  Google Scholar 

  • MJ Blaylock and BR James, Redox transformations and plant uptake of selenium resulting from root–soil interactions. Plant Soil 158 (1994) 1-12

    Article  CAS  Google Scholar 

  • N Bogdanova and R Hell, Cysteine synthesis in plants: protein–protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11 (1997) 251-262

    Article  PubMed  CAS  Google Scholar 

  • A Breton and Y Surdin-Kerjan, Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132 (1977) 224-232

    PubMed  CAS  Google Scholar 

  • TA Brown and A Shrift, Exclusion of selenium from proteins in selenium-tolerant Astragalus species. Plant Physiol 67 (1981) 1951-1953

    Google Scholar 

  • TA Brown and A Shrift, Selenium – toxicity and tolerance in higher-plants. Biol Rev 57 (1982) 59-84

    CAS  Google Scholar 

  • TC Broyer, RP Huston and CM Johnson, Selenium and nutrition of Astragalus 1. Effects of selenite or selenate supply on growth and selenium content. Plant Soil 36 (1972a) 635-649

    Article  CAS  Google Scholar 

  • TC Broyer, CM Johnson and RP Huston, Selenium and nutrition of Astragalus 2. Ionic sorption interactions among selenium, phosphate, and macronutrient and micronutrient cations. Plant Soil 36 (1972b) 651-669

    Article  CAS  Google Scholar 

  • JN Burnell, Selenium metabolism in Neptunia amplexicaulis. Plant Physiol 67 (1981) 316-324

    PubMed  CAS  Google Scholar 

  • AM Davis, Selenium accumulation in Astragalus species. Agron J 64 (1972) 751-754

    CAS  Google Scholar 

  • AM Davis, Selenium uptake in Astragalus and Lupinus species. Agron J 78 (1986) 727-729

    Article  CAS  Google Scholar 

  • JC Dawson and JW Anderson, Incorporation of cysteine and selenocysteine into cystathionine and selenocystathionine by crude extracts of spinach. Phytochemistry 27 (1988) 3453-3460

    Article  CAS  Google Scholar 

  • JC Dawson and JW Anderson, Comparative enzymology of cystathionine and selenocystathionine synthesis of selenium-accumulator and non-accumulator plants. Phytochemistry 28 (1989) 51-55

    Article  CAS  Google Scholar 

  • MP Souza De, CM Lytle, MM Mulholland, ML Otte and N Terry, Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiol 122 (2000) 1281-1288

    Article  PubMed  Google Scholar 

  • MP Souza De, EAH Pilon-Smits, CM Lytle, S Hwang, J Tai, TSU Honma, L Yeh and N Terry, Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117 (1998) 1487-1494

    Article  PubMed  Google Scholar 

  • KS Dhillon and SK Dhillon, Distribution and management of seleniferous soils. Adv Agron 79 (2003) 119-184

    CAS  Google Scholar 

  • GL Dilworth and RS Bandurski, Activation of selenate by adenosine 5'-triphosfate from Saccharomyces cerevisiae. J Biochem 163 (1977) 521-529

    CAS  Google Scholar 

  • PM Dunnill and L Fowden, The amino acids of the genus Astragalus. Phytochemistry 6 (1967) 1659-1663

    Article  CAS  Google Scholar 

  • Ellis, DR Ellis, Salt and DE Salt, Plants, selenium and human health. Curr Opin Plant Biol 6 (2003) 273-279

    Article  PubMed  CAS  Google Scholar 

  • DR Ellis, TG Sors, DG Brunk, C Albrecht, C Orser, B Lahner, KV Wood, HH Harris, IJ Pickering and DE Salt, Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4 (2004) 1

    Article  PubMed  Google Scholar 

  • JC Emerick and LS DeMarco, Geobotany of selenium. USGS survey 1064 (1990) 37-41

    Google Scholar 

  • CS Evans, CJ Asher and CM Johnson, Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh). Aust J Biol Sci 21 (1968) 13-20

    CAS  Google Scholar 

  • G Ferrari and F Renosto, Regulation of sulfate uptake by excised barley roots in the presence of selenate. Plant Physiol 49 (1972) 114-116

    PubMed  CAS  Google Scholar 

  • JL Freeman, MW Persans, K Nieman, C Albrecht, W Peer, IJ Pickering and DE Salt, Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16 (2004) 2176-2191

    Article  PubMed  CAS  Google Scholar 

  • LH Fu, XF Wang, Y Eyal, YM She, LJ Donald, KG Standing and G Ben Hayyim, A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. J Biol Chem 277 (2002) 25983-25991

    Article  PubMed  CAS  Google Scholar 

  • G Griffiths, L Trueman, T Crowther, B Thomas and B Smith, Onions – a global benefit to health. Phytother Res 16 (2002) 603-615

    Article  PubMed  CAS  Google Scholar 

  • A Halaseh, SN Nigam and WB McConnell, Biosynthesis and metabolism of cystathionine in Astragalus pectinatus. Biochim Biophys Acta 496 (1977) 272-277

    PubMed  CAS  Google Scholar 

  • DI Hall and IK Smith, Partial-purification and characterization of cystine lyase from Cabbage (Brassica oleracea var capitata). Plant Physiol 72 (1983) 654-658

    PubMed  CAS  Google Scholar 

  • A Hamamoto and M Mazelis, The C-S lyases of higher-plants – isolation and properties of homogeneous cystine lyase from broccoli (Brassica oleracea var botrytis) buds. Plant Physiol 80 (1986) 702-706

    PubMed  CAS  Google Scholar 

  • SJ Hamilton, Chemical examination of seleniferous cabbage Brassica oleracea capitata. J Agri Food Chem 23 (1975) 1150-1152

    Article  CAS  Google Scholar 

  • SJ Hamilton, Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326 (2004) 1-31

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SJ and Buhl KJ (2003) Selenium and other trace elements in water, sediment, aquatic plants, aquatic invertebrates, and fish from streams in southeastern Idaho near phosphate mining operations. Final report as part of the USGS Western U.S. Phosphate Project

  • D Hatfield, IS Choi, S Mischke and LD Owens, Selenocysteyl-transfer RNAs recognize UGA in Beta vulgaris, a higher-plant, and in Gliocladium virens, a filamentous fungus. Biochem Biophys Res Commun 184 (1992) 254-259

    Article  PubMed  CAS  Google Scholar 

  • Y Hatzfeld, N Cathala, C Grignon and JC Davidian, Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells. Plant Physiol 116 (1998) 1307-1313

    Article  PubMed  CAS  Google Scholar 

  • MJ Hawkesford, JC Davidian and C Grignon, Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulphur-starved plants. Planta 190 (1993) 297-304

    Article  CAS  Google Scholar 

  • S Heiss, HJ Schafer, A Haag-Kerwer and T Rausch, Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39 (1999) 947-957

    Article  Google Scholar 

  • H Hesse, O Kreft, S Maimann, M Zeh and R Hoefgen, Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55 (2004) 1799-1808

    Article  PubMed  CAS  Google Scholar 

  • MY Hirai, T Fujiwara, M Awazuhara, T Kimura, M Noji and K Saito, Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33 (2003) 651-663

    Article  PubMed  CAS  Google Scholar 

  • MJ Horn and DB Jones, Isolation from Astragalus pectinatus of a crystalline amino acid complex containing selenium and sulfur. J Biol Chem 139 (1941) 649-652

    CAS  Google Scholar 

  • HS Hsieh and HE Ganther, Acid-volatile selenium formation catalyzed by glutathione reductase. Biochemistry 14 (1975) 1632-1636

    Article  PubMed  CAS  Google Scholar 

  • AM Hurd-Karrer, Selenium absorption by crop plants as related to their sulphur requirement. J Agric Res 54 (1937) 601-608

    CAS  Google Scholar 

  • C Ip and HE Ganther, Comparison of selenium and sulfur analogs in cancer prevention. Carcinogenesis 13 (1992) 1167-1170

    PubMed  CAS  Google Scholar 

  • PP Jablonski and JW Anderson, Light-dependent reduction of selenite by sonicated pea-chloroplasts. Phytochemistry 21 (1982) 2179-2184

    Article  CAS  Google Scholar 

  • C Kahakachchi, HT Boakye, PC Uden and JF Tyson, Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. J Chromatogr A 1054 (2004) 303-312

    Article  PubMed  CAS  Google Scholar 

  • Knight SH and Beath OA (1937) The occurrence of selenium and seleniferous vegetation in Wyoming. Wyoming Agric Exp Station Bull : 221

  • DA Kopsell and WM Randle, Short-day onion cultivars differ in bulb selenium and sulfur accumulation which can affect bulb pungency. Euphytica 96 (1997) 385-390

    Article  CAS  Google Scholar 

  • M Kotrebai, M Birringer, JF Tyson, E Block and PC Uden, Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst 125 (2000) 71-78

    Article  PubMed  CAS  Google Scholar 

  • NM Kredich, The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6 (1992) 2747-2753

    PubMed  CAS  Google Scholar 

  • Kubec R, Drhova V and Velisek J (1998) Thermal degradation of S-methylcysteine and its sulfoxide-important flavor precursors of Brassica and Allium vegetables. J Agric Food Chem : 4334–4340

  • GM Lacourciere and TC Stadtman, Utilization of selenocysteine as a source of selenium for selenophosphate biosynthesis. Biofactors 14 (2001) 69-74

    PubMed  CAS  Google Scholar 

  • B Lass and CI Ullrich-Eberius, Evidence for proton/sulfate cotransport and its kinetics in Lemna gibba G1. Planta 161 (1984) 53-60

    Article  CAS  Google Scholar 

  • A Läuchli, Selenium in plants – uptake, functions, and environmental toxicity. Bot Acta 106 (1993) 455-468

    Google Scholar 

  • DL LeDuc, AS Tarun, M Montes-Bayon, J Meija, MF Malit, CP Wu, M AbdelSamie, CY Chiang, A Tagmount, M deSouza, B Neuhierl, A Bock, J Caruso and N Terry, Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135 (2004) 377-383

    Article  PubMed  CAS  Google Scholar 

  • S Lee and T Leustek, The effect of cadmium on sulfate assimilation enzymes in Brassica juncea. Plant Sci 141 (1999) 201-207

    Article  CAS  Google Scholar 

  • AD Lemly, Environmental implications of excessive selenium: a review. Biomed Environ Sci 10 (1997) 415-435

    PubMed  CAS  Google Scholar 

  • AD Lemly and HM Ohlendorf, Regulatory implications of using constructed wetlands to treat selenium-laden wastewater. Ecotoxicol Environ Saf 52 (2002) 46-56

    Article  PubMed  CAS  Google Scholar 

  • AD Lemly, Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59 (2004) 44-56

    Article  PubMed  CAS  Google Scholar 

  • T. Leustek, Sulfate metabolism. In: CR Somerville and EM Meyerowitz (eds.) The Arabidopsis Book. Rockville, MD, USA: American Society of Plant Biologists (2002) pp.

    Google Scholar 

  • T Leustek and K Saito, Sulfate transport and assimilation in plants. Plant Physiol 120 (1999) 637-643

    PubMed  CAS  Google Scholar 

  • T Leustek, M Murillo and M Cervantes, Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol 105 (1994) 897-902

    Article  PubMed  CAS  Google Scholar 

  • T Leustek, MN Martin, JA Bick and JP Davies, Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51 (2000) 141-165

    Article  PubMed  CAS  Google Scholar 

  • BG Lewis, CM Johnson and TC Broyer, Volatile selenium in higher-plants – production of dimethyl selenide in cabbage leaves by enzymatic cleavage of Se-methyl selenomethionine selenonium salt. Plant Soil 40 (1974) 107-118

    Article  CAS  Google Scholar 

  • JL Martin, A Shrift and ML Gerlach, Use of 75Se-selenite for the study of selenium metabolism in Astragalus. Biochemistry 10 (1971) 945-952

    CAS  Google Scholar 

  • A Maruyama-Nakashita, E Inoue, A Watanabe-Takahashi, T Yamaya and H Takahashi, Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33 (2003) 633-650

    Article  PubMed  Google Scholar 

  • Mayland HF, Jams LF, Panter KE and Sonderegger JL (1989) Selenium in seleniferous environments, pp 15–50. In: Jacobs LW (ed) Selenium in Agriculture and the Environment. Soil Science Society of America, Special Publication Number 23, Madison, WI, USA

  • TJ McCluskey, AR Scarf and JW Anderson, Enzyme catalyzed alpha, beta-elimination of selenocystathionine and selenocystine and their sulfur isologs by plant-extracts. Phytochemistry 25 (1986) 2063-2068

    Article  CAS  Google Scholar 

  • J Meija, M Montes-Bayon, DL Le Duc, N Terry and JA Caruso, Simultaneous monitoring of volatile selenium and sulfur species from se accumulating plants (wild type and genetically modified) by GC/MS and GC/ICPMS using solid-phase microextraction for sample introduction. Anal Chem 74 (2002) 5837-5844

    Article  PubMed  CAS  Google Scholar 

  • RL Mikkelsen and HF Wan, The effect of selenium on sulfur uptake by barley and rice. Plant Soil 121 (1990) 151-153

    Article  CAS  Google Scholar 

  • GT Mullenbach, A Tabrizi, BD Irvine, GI Bell and RA Hallewell, Sequence of a cDNA coding for human glutathione-peroxidase confirms TGA encodes active-site selenocysteine. Nucl Acids Res 15 (1987) 5484

    PubMed  CAS  Google Scholar 

  • S Muller, J Heider and A Bock, The path of unspecific incorporation of selenium in Escherichia coli. Arch Microbiol 168 (1997) 421-427

    Article  PubMed  CAS  Google Scholar 

  • M Murillo and T Leustek, Adenosine-5'-triphosphate-sulfurylase from Arabidopsis thaliana and Escherichia coli are functionally equivalent but structurally and kinetically divergent: nucleotide sequence of two adenosine-5'-triphosphate-sulfurylase cDNAs from Arabidopsis thaliana and analysis of a recombinant enzyme. Arch Biochem Biophys 323 (1995) 195-204

    Article  PubMed  CAS  Google Scholar 

  • B Neuhierl and A Bock, On the mechanism of selenium tolerance in selenium-accumulating plants: purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur J Biochem 239 (1996) 235-238

    Article  PubMed  CAS  Google Scholar 

  • B Neuhierl and A Bock, Selenocysteine methyltransferase. Meth Enzymol 347 (2002) 203-207

    PubMed  CAS  Google Scholar 

  • B Neuhierl, M Thanbichler, F Lottspeich and A Bock, A family of S-methylmethionine-dependent thiol/selenol methytransferases. J Biol Chem 274 (1999) 5407-5414

    Article  PubMed  CAS  Google Scholar 

  • BH Ng and JW Anderson, Synthesis of selenocysteine by cysteine synthase from selenium accumulator and non-accumulator plants. Phytochemistry 17 (1978) 2069-2074

    Article  CAS  Google Scholar 

  • SN Nigam and WB McConnell, Isolation and identification of L-cystathionine and L-selenocystathionine from the foliage of Astragalus pectinatus. Phytochemistry 11 (1972) 377-380

    Article  CAS  Google Scholar 

  • SN Nigam and WB McConnell, Isolation and identification of two isomeric glutamylselenocystathionines from seeds of Astragalus pectinatus. Biochim Biophys Acta 437 (1976) 116-121

    PubMed  CAS  Google Scholar 

  • M Noji and K Saito, Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulphur metabolic engineering in plants. Amino Acids 22 (2002) 231-243

    Article  PubMed  CAS  Google Scholar 

  • M Noji, K Inoue, N Kimura, A Gouda and K Saito, Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273 (1998) 32739-32745

    Article  PubMed  CAS  Google Scholar 

  • SV Novoselov, M Rao, NV Onoshko, HJ Zhi, GV Kryukov, YB Xiang, DP Weeks, DL Hatfield and VN Gladyshev, Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21 (2002) 3681-3693

    Article  PubMed  CAS  Google Scholar 

  • HM Ohlendorf, DJ Hoffman, MK Saiki and TW Aldrich, Embryonic mortality and abnormalities of aquatic birds – apparent impact of selenium from irrigation drainwater. Sci Total Environ 52 (1986) 49-63

    Article  CAS  Google Scholar 

  • LR Olsen, B Huang, MW Vetting and SL Roderick, Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. Biochemistry 43 (2004) 6013-6019

    Article  PubMed  CAS  Google Scholar 

  • CS Orser, DE Salt, IJ Pickering, R Prince, A Epstein and BD Ensley, Brassica plants to provide enhanced human mineral nutrition: selenium phytoenrichment and metabolic transformation. J Med Food 1 (1999) 253-261

    Google Scholar 

  • PJ Peterson and PJ Robinson, L-Cystathionine and its selenium analog in Neptunia-amplexicaulis. Phytochemistry 11 (1972) 1837

    Article  CAS  Google Scholar 

  • IJ Pickering, RC Prince, DE Salt and GN George, Quantitative, chemically specific imaging of selenium transformation in plants. Proc Nat Acad Sci USA 97 (2000) 10717-10722

    Article  PubMed  CAS  Google Scholar 

  • IJ Pickering, C Wright, B Bubner, DR Ellis, MW Persans, EY Yu, GN George, RC Prince and DE Salt, Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131 (2003) 1-8

    Article  CAS  Google Scholar 

  • EAH Pilon-Smits, GF Garifullina, S Abdel-Ghany, SI Kato, H Mihara, KL Hale, JL Burkhead, N Esaki, T Kurihara and M Pilon, Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130 (2002) 1309-1318

    Article  PubMed  CAS  Google Scholar 

  • EAH Pilon-Smits, SB Hwang, CM Lytle, YL Zhu, JC Tai, RC Bravo, YC Chen, T Leustek and N Terry, Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119 (1999) 123-132

    Article  PubMed  CAS  Google Scholar 

  • MJ Pimenta, T Kaneta, Y Larondelle, N Dohmae and Y Kamiya, S-Adenosyl-L-methionine : L-methionine S-methyltransferase from germinating barley. Plant Physiol 118 (1998) 431-438

    Article  PubMed  CAS  Google Scholar 

  • MF Raisbeck, Selenosis. Vet Clin North Am Food Anim Pract 16 (2000) 465-480

    PubMed  CAS  Google Scholar 

  • P Ranocha, F Bourgis, MJ Ziemak, D Rhodes, DA Gage and AD Hanson, Characterization and functional expression of cDNAs encoding methionine-sensitive and – insensitive homocysteine S-methyltransferases from Arabidopsis. J Biol Chem 275 (2000) 15962-15968

    Article  PubMed  CAS  Google Scholar 

  • P Raspor, S Fujs, L Banszky, A Maraz and M Batic, The involvement of ATP sulfurylase in Se(VI) and Cr(VI) reduction processes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 63 (2003) 89-95

    Article  PubMed  CAS  Google Scholar 

  • S Ravanel, MA Block, P Rippert, S Jabrin, G Curien, F Rebeille and R Douce, Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279 (2004) 22548-22557

    Article  PubMed  CAS  Google Scholar 

  • F Renosto, CP Hemang, RL Martin, C Thomassian, G Zimmerman and IH Segel, ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf. Arch Biochem Biophys 307 (1993) 272-285

    Article  PubMed  CAS  Google Scholar 

  • C Rotte and T Leustek, Differential subcellular localization and expression of ATP sulfurylase and 5'-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastic forms of ATP sulfurylase may have specialized functions. Plant Physiol 124 (2000) 715-724

    Article  PubMed  CAS  Google Scholar 

  • K Saito, Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136 (2004) 2443-2450

    Article  PubMed  CAS  Google Scholar 

  • K Saito, H Tkahashi, M Noji, K Inoue and Y Hatzfeld, Molecular regulation of sulfur assimilation and cysteine synthesis. In: C Brunold (ed.) Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Switzerland: Paul Haupt, Bern (2000) pp. 59-72

    Google Scholar 

  • Seiler RL, Skorupa JP and Peltz LA (1999) Areas susceptible to irrigation-induced selenium contamination of water and biota in the western United States. USGS Survey : 1180

  • M Seppänen, M Turakainen and H Hartikainen, Selenium effects on oxidative stress in potato. Plant Sci 165 (2003) 311-319

    Article  CAS  Google Scholar 

  • A Setya, M Murillo and T Leustek, Sulfate reduction in higher plants: molecular evidence for a novel 5'-adenylylsulfate reductase. Proc Nat Acad Sci USA 93 (1996) 13383-13388

    Article  PubMed  CAS  Google Scholar 

  • WH Shaw and JW Anderson, Comparative enzymology of the adenosine triphosphate sulphurylase from leaf tissue of selenium accumulator and non-accumulator plants. Biochem J 139 (1974) 37-42

    PubMed  CAS  Google Scholar 

  • N Shibagaki, A Rose, JP McDermott, T Fujiwara, H Hayashi, T Yoneyama and JP Davies, Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29 (2002) 475-486

    Article  PubMed  CAS  Google Scholar 

  • A Shrift, Aspects of selenium metabolism in higher plants. Annu Rev Plant Physiol 20 (1969) 475-495

    Article  CAS  Google Scholar 

  • A Shrift and J Ulrich, Transport of selenate and selenite into Astragalus roots. Plant Physiol 44 (1969) 893-896

    PubMed  CAS  Google Scholar 

  • A Shrift and TK Virupaksha, Seleno-amino acids in selenium-accumulating plants. Biochim Biophys Acta 100 (1965) 65-75

    PubMed  CAS  Google Scholar 

  • A Sirko, A Blaszczyk and F Liszewska, Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects. J Exp Bot 55 (2004) 1881-1888

    Article  PubMed  CAS  Google Scholar 

  • FW Smith, MJ Hawkesford, IM Prosser and DT Clarkson, Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high-affinity sulfate transporter at the plasma-membrane. Mol Gen Genet 247 (1995) 709-715

    Article  PubMed  CAS  Google Scholar 

  • FW Smith, MJ Hawkesford, PM Ealing, DT Clarkson, PJ Vanden Berg, AR Belcher and AG Warrilow, Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12 (1997) 875-884

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Role of sulfur assimilating enzymes in selenate reduction, tolerance and accumulation in Astragalus. Plant J (in press)

  • TC Stadtman, Selenium biochemistry. Ann Rev Biochem 59 (1990) 111-127

    Article  PubMed  CAS  Google Scholar 

  • M Suter, P Ballmoos von, S Kopriva, RO Camp den, J Schaller, C Kuhlemeier, P Schurmann and C Brunold, Adenosine 5'-phosphosulfate sulfotransferase and adenosine 5'-phosphosulfate reductase are identical enzymes. J Biol Chem 275 (2000) 930-936

    Article  PubMed  CAS  Google Scholar 

  • A Tagmount, A Berken and N Terry, An essential role of S-adenosyl-L-methionine : L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium-methionine, the precursor of volatile selenium. Plant Physiol 130 (2002) 847-856

    Article  PubMed  CAS  Google Scholar 

  • H Takahashi, M Yamazaki, N Sasakura, A Watanabe, T Leustek, JA Engler, G Engler, M Montagu Van and K Saito, Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94 (1997) 11102-11107

    Article  PubMed  CAS  Google Scholar 

  • N Terry, AM Zayed, MP Souza De and AS Tarun, Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51 (2000) 401-432

    Article  PubMed  CAS  Google Scholar 

  • SF Trelease and HM Trelease, Selenium as a stimulating and possibly essential element for indicator plants. Am J Bot 25 (1938) 372-380

    CAS  Google Scholar 

  • SF Trelease and HM Trelease, Physiological differentiation in Astragalus with reference to selenium. Am J Bot 26 (1939) 530-535

    CAS  Google Scholar 

  • G Tsakrakildes, M Martin, R Chalam, MC Tarczynski, A Schmidt and T Leustek, Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa. Plant J 32 (2002) 879-889

    Article  PubMed  Google Scholar 

  • JM Ulrich and A Shrift, Selenium absorption by excised Astragalus roots. Plant Physiol 43 (1968) 14-20

    PubMed  Google Scholar 

  • JV Vadgama, Y Wu, D Shen, S Hsia and J Block, Effect of selenium in combination with Adriamycin or Taxol on several different cancer cells. Anticancer Res 20 (2000) 1391-1414

    PubMed  CAS  Google Scholar 

  • T Huysen Van, S Abdel-Ghany, KL Hale, D LeDuc, N Terry and EAH Pilon-Smits, Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea. Planta 218 (2003) 71-78

    Article  PubMed  CAS  Google Scholar 

  • T Huysen Van, N Terry and EA Pilon-Smits, Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-gamma-synthase. Int J Phyto 6 (2004) 111-118

    Article  CAS  Google Scholar 

  • M Vinceti, ET Wei, C Malagoli, M Bergomi and G Vivoli, Adverse health effects of selenium in humans. Rev Environ Health 16 (2001) 233-251

    PubMed  CAS  Google Scholar 

  • TK Virupaksha and A Shrift, Biochemical differences between selenium accumulator and non-accumulator Astragalus species. Biochim Biophys Acta 107 (1965) 69-80

    PubMed  CAS  Google Scholar 

  • TK Virupaksha, A Shrift and H Tarver, Metabolism of selenomethionine in selenium accumulator and non-accumulator Astragalus species. Biochim Biophys Acta 130 (1966) 45-55

    CAS  Google Scholar 

  • PD Whanger, Selenocompounds in plants and animals and their biological significance. J Am College Nutr 21 (2002) 223-232

    CAS  Google Scholar 

  • PD Whanger, Selenium and its relationship to cancer: an update. Br J Nutr 91 (2004) 11-28

    Article  PubMed  CAS  Google Scholar 

  • JR Whitaker, Development of flavor, odor and pungency in onion and garlic. Adv Food Res 22 (1976) 73-133

    CAS  Google Scholar 

  • PJ White, HC Bowen, P Parmaguru, M Fritz, WP Spracklen, RE Spiby, MC Meachan, A Mead, M Harriman, LJ Trueman, BM Smith, B Thomas and MR Broadley, Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55 (2004) 1927-1937

    Article  PubMed  CAS  Google Scholar 

  • LG Wilson and RS Bandurski, Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem 233 (1958) 975-981

    PubMed  CAS  Google Scholar 

  • M Wirtz and R Hell, Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino acids 24 (2003) 195-203

    PubMed  CAS  Google Scholar 

  • L Wu, Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57 (2004) 257-269

    Article  PubMed  CAS  Google Scholar 

  • TL Xue, H Hartikainen and V Piironen, Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237 (2001) 55-61

    Article  CAS  Google Scholar 

  • NK Ziebur and A Shrift, Response to selenium by callus cultures derived from Astragalus species. Plant Physiol 47 (1971) 545-550

    Article  PubMed  CAS  Google Scholar 

  • F Zinoni, A Birkmann, W Leinfelder and A Bock, Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci USA 84 (1987) 3156-3160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.E. Salt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sors, T., Ellis, D. & Salt, D. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86, 373–389 (2005). https://doi.org/10.1007/s11120-005-5222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-5222-9

Keywords

Navigation