Skip to main content
Log in

Genome-Wide Phylogenetic Analysis of Stress-Activated Protein Kinase Genes in Rice (OsSAPKs) and Expression Profiling in Response to Xanthomonas oryzae pv. oryzicola Infection

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

All members of the SnRK2 protein kinase gene family encoded by the rice (Oryza sativa L.) genome are activated by hyperosmotic stress, and have been designated as stress-activated protein kinases (SAPKs). In this study, gene structures, phylogeny, and conserved motifs for the entire OsSAPK gene family in rice have been analyzed. Moreover, expression patterns of OsSAPK in response to infection with Xanthomonas oryzae pv. oryzicola (Xoc) were investigated. A total of ten OsSAPK genes in the japonica rice cultivar 9804 were identified and classified into four groups. All genes had similar exon–intron structures and organization of putative motifs/domains, and shared the same four motifs (motifs 1–4). Group I (OsSAPK1 and OsSAPK2) shared another two motifs (motif 5 and motif 10), while group III (OsSAPK8, OsSAPK9 and OsSAPK10) had seven motifs in common (motifs 1–7). Moreover, we found that four OsSAPKs, including OsSAPK3, OsSAPK5, OsSAPK7 and OsSAPK9, were significantly upregulated in response to infection by Xoc in rice plants carrying the nonhost resistance gene Rxo1. Four of the OsSAPK genes in which expression was upregulated were localized to both the cytoplasm and nucleus, but clustered in different groups, suggesting that they are involved in different resistance signal transduction pathways. These results will provide useful information for the future functional dissection of this gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–e
Fig. 2a–f
Fig. 3
Fig. 4a,b

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis unAtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Agueci F, Rutten T, Demidov D, Houben A (2012) Arabidopsis AtNek2 kinase is essential and associates with microtubules. Plant Mol Biol Rep 30(2):339–348

    Article  CAS  Google Scholar 

  • Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA 89:10183–10187

    Article  PubMed  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abotic stresses: from genes to the field. J Exp Bot 63:3523–3543. doi:10.1093/jxb/ers100

    Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    Article  PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A Gateway TM cloning vector set for high-throughput functional analysis of genes in plants. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulateds stress-responsive gene expression in rice. BMC Plant Biol 8:49

    Article  PubMed  Google Scholar 

  • Du H, Yang SS, Feng BR, Liu L, Tang YX, Huang YB, Liang Z (2012) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106

    Article  PubMed  CAS  Google Scholar 

  • Ferreiro I, Barragan M, Gubern A, Ballestar E, Joaquin M, Posas F (2010) The p38 SAPK is recruited to chromatin via its interaction with transcription factors. J Biol Chem 285:31819–31828

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA 106:8380–8385

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA 108:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 502:123–2132

    Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Holappa LD, Walekr-Simmons MK (1995) The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is upregulated by dehydration, cold temperature, and osmotic stress. Plant Physiol 108:1203–1210

    PubMed  CAS  Google Scholar 

  • Hotta H, Aoki N, Matsuda T, Adachi T (1998) Molecular ananysis of a novel protein kinase in maturing rice seed. Gene 21:347–354

    Google Scholar 

  • Hou L, Chen LJ, Wang JY, Xu DF, Dai LX, Zhang H, Zhao YX (2012) Construction of stress responsive synthetic promotersand analysis of their activity in transgenicArabidopsis thaliana. Plant Mol Biol Rep 30:1496–1506

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Huai J, Wang M, He J, Zheng J, Dong Z, Lu H, Zhao J, Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    Article  PubMed  CAS  Google Scholar 

  • Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abotic stresses. OMICS 15:859–872

    Article  PubMed  CAS  Google Scholar 

  • Li LB, Zhang YR, Liu KC, Ni ZF, Fang ZJ, Sun QX, Gao JW (2010) Identification and bioinformatics analysis of SnRK2 and CIPK family genes in Sorghum. Agric Sci China 9:19–30

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Nicole MC, Hame LP, Morency MJ, Beaudoin N, Ellis BE, Séguin A (2006) MAP-ping genomic orgnization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMC Genomics 7:223

    Article  PubMed  Google Scholar 

  • Pavesi G, Mereghetti P, Mauri G, Pesole G (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32:199–203

    Article  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  PubMed  CAS  Google Scholar 

  • Shi J, An HL, Zhang L, Gao Z, Guo XQ (2010) GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol 74:1–17

    Article  PubMed  CAS  Google Scholar 

  • Soon FF, Ley-Moy N, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88

    Article  PubMed  CAS  Google Scholar 

  • Stolf-Moreira R, Lemos EGM, Carareto-Alves L, Marcondes J, Pereira SS, Rolla AAP, Pereira RM, Neumaier N, Binneck E, Abdelnoor RV, de Oliveira MCN, Marcelino FC, Farias JRB, Nepomuceno AL (2011) Transcriptional profiles of roots of different soybean genotypes subjected to drought tress. Plant Mol Biol Rep 29:19–34

    Article  Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    Article  PubMed  CAS  Google Scholar 

  • Tang DZ, Wu WR, Li WM, Lu H, Worland AJ (2000) Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet 101:286–291

    Article  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Liu L, Ni ZY, Liu P, Chen M, Li LC, Chen YF, Ma YZ (2009) W55a encodes a novel protein kinase that is involved in multiple stress responses. J Integr Plant Biol 51:58–66

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi D, Zentella R, Ho TH (2002) Molecular analysis of the barley (Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta 215:319–326

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    Article  PubMed  CAS  Google Scholar 

  • Zhao BY, Lin XH, Poland J, Trick H, Leach JE, Hulbert SH (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 1021:5383–15388

    Google Scholar 

  • Zhou YL, Xu MR, Zhao MF, Xie XW, Zhu LH, Fu BY, Li ZK (2010) Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola. BMC Genomics 11:78

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Natural Science Foundation of China (31071079 and 30571200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Li Zhou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 40 kb)

ESM 2

(PPT 261 kb)

ESM 3

(DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, MR., Huang, LY., Zhang, F. et al. Genome-Wide Phylogenetic Analysis of Stress-Activated Protein Kinase Genes in Rice (OsSAPKs) and Expression Profiling in Response to Xanthomonas oryzae pv. oryzicola Infection. Plant Mol Biol Rep 31, 877–885 (2013). https://doi.org/10.1007/s11105-013-0559-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0559-2

Keywords

Navigation