Skip to main content
Log in

Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The Tehuacán-Cuitcatlán reserve is an area of unique plant biodiversity mostly in the form of xerophytes, with exceptionally high numbers of rare and endemic species. This endemism results partly from the characteristics of the climate of this area, with two distinct seasons: rainy and dry seasons. Although rhizosphere communities must be critical in the function of this ecosystem, understanding the structure of these communities is currently limited. This is the first molecular study of the microbial diversity present in the rhizosphere of Mamillaria carnea.

Methods

Total DNA was obtained from soil and rhizosphere samples at three locations in the Tehuacán Cuicatlán Reserve, during dry and rainy seasons. Temperature gradient gel electrophoresisis (TGGE) fingerprinting, 16S rRNA gene libraries and pyrosequencing were used to investigate bacterial diversity in the rhizosphere of Mammillaria carnea and changes in the microbial community between seasons.

Results

Deep sequencing data reveal a higher level of biodiversity in the dry season. Statistical analyses based on these data indicates that the composition of the bacterial community differed between both seasons affecting to members of the phyla Acidobacteria, Cyanobacteria, Gemmatimonadetes, Plantomycetes, Actinobacteria and Firmicutes. In addition, the depth of sequencing performed (>24,000 reads) enables detection of changes in the relative abundance of lower bacterial taxa (novel bacterial phylotypes) indicative of the increase of specific bacterial populations due to the season.

Conclusions

This study states the basis of the bacterial diversity in the rhizosphere of cacti in semi-arid environments and it is a sequence-based demonstration of community shifts in different seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angel R, Soares MI, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563

    Article  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  • Bachar A, Al-Ashhab A, Soares MI, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol 60:453–461

    Article  PubMed  Google Scholar 

  • Bahl J, Lau MC, Smith GJ, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FK, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 25:163

    Article  Google Scholar 

  • Baker G, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Binladen J, Gilbert MT, Bollback JP, Panitz F, Bendixen C, Nielsen R, Willerslev E (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2:e197

    Article  PubMed  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Article  PubMed  CAS  Google Scholar 

  • Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58:531–539

    Article  PubMed  Google Scholar 

  • Chow ML, Radomski CC, McDermott JM, Davies J, Axelrood PE (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Austr J Ecol 18:117–143

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744

    Article  PubMed  Google Scholar 

  • Dávila P, Arizmendi M, Valiente-Banuet A, Villaseñor J, Casas A, Lira R (2002) Biological diversity in the Tehuacan-Cuicatlan Valley, México. Biodiv Conserv 11:421–442

    Article  Google Scholar 

  • Elshahed MS, Youssef NH, Spain AM, Sheik C, Najar FZ, Sukharnikov LO, Roe BA, Davis JP, Schloss PD, Bailey VL, Krumholz LR (2008) Novelty and uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol 74:5422–5428

    Article  PubMed  CAS  Google Scholar 

  • Enge K, Whiteford S (1989) The keepers of water and earth: Mexican rural social organization and irrigation. University of Texas Press, Austin

    Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package). Version 3.6. Department of Genome Sciences, University of Washington, Seattle (distributed by the author)

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507

    Article  PubMed  Google Scholar 

  • Green SJ, Blackford C, Bucki P, Jahnke LL, Prufert-Bebout L (2008) A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME J 2:457–470

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M, Widmer F (2006) Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • He J, Xu Z, Hughes J (2006) Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia. FEMS Microbiol Ecol 55:38–47

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed  CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  PubMed  CAS  Google Scholar 

  • Kempers AJ (1974) Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodiumnitroprusside and hypochlorite. Geoderma 12:201–206

    Article  CAS  Google Scholar 

  • Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6:e24452

    Article  PubMed  Google Scholar 

  • Kolton M, Meller Harel Y, Pasternak Z, Graber ER, Elad Y, Cytryn E (2007) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  • Moissl C, Osman S, La Duc MT, Dekas A, Brodie E, DeSantis T, Venkateswaran K (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol 61:509–521

    Article  PubMed  CAS  Google Scholar 

  • Morales SE, Cosart TF, Johnson JV, Holben WE (2009) Extensive phylogenetic analysis of a soil bacterial community illustrates extreme taxon evenness and the effects of amplicon length, degree of coverage, and DNA fractionation on classification and ecological parameters. Appl Environ Microbiol 75:668–675

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000

    Article  PubMed  CAS  Google Scholar 

  • Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  PubMed  CAS  Google Scholar 

  • Porteous LA, Armstrong JL, Seidler RJ, Watrud LS (1994) An effective method to extract DNA from environmental samples for polymerase chain reaction amplification and DNA fingerprint analysis. Curr Microbiol 29:301–307

    Article  PubMed  CAS  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Aguilar V, Godinez-Alvarez H, Moreno-Torres R, Rodriguez-Zaragoza S (2009) Soil physico-chemical properties affecting the distribution of biological soil crusts along an environmental transect at Zapotitlan drylands. Mexico J Arid Environ 73:1023–1028

    Article  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Rosselló-Mora R, Aman R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  • Saul-Tcherkas V, Steinberger Y (2011) Soil microbial diversity in the vicinity of a Negev Desert shrub-Reaumuria negevensis. Microb Ecol 61:64–81

    Article  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92

    Article  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rDNA sequence libraries from environmental samples. Appl Environ Microbiol 67:4373–4376

    Article  Google Scholar 

  • Smith CE (1965) Flora Tehuacán Valley. Fieldiana Botany 31:101–143

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A (2010) Environmental distribution of prokaryotic taxa. BMC Microbiol 10:85

    Article  PubMed  Google Scholar 

  • Tarlera S, Jangid K, Ivester AH, Whitman WB, Williams MA (2008) Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. FEMS Microbiol Ecol 64:129–140

    Article  PubMed  CAS  Google Scholar 

  • Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12:592–607

    Article  PubMed  Google Scholar 

  • van Dillewijn P, Villadas PJ, Toro N (2002) Effect of a Sinorhizobium meliloti strain with a modified putA gene on the rhizosphere microbial community of alfalfa. Appl Environ Microbiol 68:4201–4208

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Villadas PJ, Fernández-López M, Ramírez-Saad H, Toro N (2007) Rhizosphere-bacterial community in Eperua falcata (Caesalpiniaceae) a putative nitrogen-fixing tree from French Guiana rainforest. Microb Ecol 53:317–327

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. App Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Wong FK, Lacap DC, Lau MC, Aitchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739

    Article  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  PubMed  CAS  Google Scholar 

  • Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75:5227–5236

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research projects BIO2003-02473, OAPN21/2007, BIO2008-00740 and CSD 2009-0006 of the Consolider-Ingenio 2010 program from the Ministerio de Ciencia e Innovación; P08-CVI-03549 from Consejería de Innovación, Ciencia y Empresa of Junta de Andalucía including ERDF (European Regional Development Fund); and the BBVA Foundation (BBVA BIOCON 04-084 Project). G.T.C. and A.J.F.G. were supported by CSIC predoctoral and FPU fellowships, respectively, from the Ministerio de Ciencia e Innovación. V.M. and J.F.A.G. were supported by the mentioned BBVA Project. We are grateful to J.I. Jiménez-Zurdo and A. Schüβler for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Martínez-Abarca.

Additional information

Responsible Editor: Petra Marschner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(JPEG 130 kb)

High resolution image (TIFF 3223 kb)

Figure S2

(JPEG 121 kb)

High resolution image (TIFF 703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Cortés, G., Millán, V., Fernández-González, A.J. et al. Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant Soil 357, 275–288 (2012). https://doi.org/10.1007/s11104-012-1152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1152-4

Keywords

Navigation