Skip to main content
Log in

Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Biochar has been shown to aid soil fertility and crop production in some circumstances. We investigated effects of the addition of Jarrah (Eucalyptus marginata) biochar to a coarse textured soil on soil carbon and nitrogen dynamics.

Methods

Wheat was grown for 10 weeks, in soil treated with biochar (0, 5, or 25 t ha−1) in full factorial combination with nitrogen (N) treatments (organic N, inorganic N, or control). Samples were analysed for plant biomass, soil microbial biomass carbon (MBC) and nitrogen (MBN), N mineralisation, CO2 evolution, community level physiological profiles (CLPP) and ammonia oxidising bacterial community structure.

Results

MBC significantly decreased with biochar addition while MBN was unaltered. Net N mineralisation was highest in control soil and significantly decreased with increasing addition of biochar. These findings could not be attributed to sorption of inorganic N to biochar. CO2 evolution decreased with 5 t ha−1 biochar but not 25 t ha−1. Biochar addition at 25 t ha−1 changed the CLPP, while the ammonia oxidising bacterial community structure changed only when biochar was added with a N source.

Conclusion

We conclude that the activity of the microbial community decreased in the presence of biochar, through decreased soil organic matter decomposition and N mineralisation which may have been caused by the decreased MBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

AOB:

ammonia oxidising bacteria

BC:

black carbon

CLPP:

community level physiological profile

DMRT:

Duncan’s multiple range test

EC:

electrical conductivity

IRGA:

infra-red gas analyser

MBC:

microbial biomass carbon

MBN:

microbial biomass nitrogen

PCR:

polymerase chain reaction

PERMANOVA:

permutational analysis of variance

T-RFLP:

terminal restriction fragment length polymorphism

WHC:

water holding capacity

References

  • Aciego Pietri JC, Brookes PC (2008) Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol Biochem 40:1856–1861

    Article  CAS  Google Scholar 

  • Anderson, JPE (1982) Soil Respiration. In: Page AL, Miller RH, Keeney DR. (eds), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Second Edition. Agronomy Monograph 9:ASA–SSSA, Madison, Wisconsin, pp 831–871

  • Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639

    Article  Google Scholar 

  • Anderson JPE, Domsch K (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Ball PN, MacKenzie MD, DeLuca TH, Holben WE (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J Environ Qual 39:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Berglund LM, DeLuca TH, Zackrisson O (2004) Activated carbon amendments to soil alter nitrification rates in Scots pine forests. Soil Biol Biochem 36:2067–2073

    Article  CAS  Google Scholar 

  • Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283

    Article  PubMed  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Cheng C, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Article  CAS  Google Scholar 

  • Cheng C, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223

    Article  PubMed  CAS  Google Scholar 

  • DeBoer W, Kowalchuk GA (2001) Nitrification in acid soil: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Article  CAS  Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influence plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320

    Article  CAS  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Sci Soc Am J 70:448–453

    Article  CAS  Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197

    Article  PubMed  CAS  Google Scholar 

  • Durenkamp M, Luo Y, Brookes PC (2010) Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol Biochem 42:2026–2029

    Article  CAS  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313

    Article  PubMed  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soil 35:219–230

    Article  CAS  Google Scholar 

  • Gleeson DB, Müller C, Banerjee S, Ma W, Siciliano SD, Murphy DV (2010) Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol Biochem 42:1888–1891

    Article  CAS  Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and RNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  PubMed  CAS  Google Scholar 

  • Gundale MJ, DeLuca TH (2007) Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas fir ecosystem. Biol Fertil Soil 43:303–311

    Article  CAS  Google Scholar 

  • Hina K, Bishop P, Camps Arbestain M, Calvelo-Pereira R, Maciá-Agulló JA, Hindmarsh J, Hanly JA, Macías F, Hedley MJ (2010) Producing biochars with enhanced surface activity through alkaline pretreatment of feedstocks. Aust J Soil Res 48:606–617

    Article  CAS  Google Scholar 

  • Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101:15136–15141

    Article  PubMed  CAS  Google Scholar 

  • Isbell RF (1996) The Australian soil classification. CSIRO Publishing, Melbourne

    Google Scholar 

  • Joergensen RG, Brookes PC (1990) Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol Biochem 22:1023–1027

    Article  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Kamphake LJ, Hannah SA, Cohen JM (1967) Automated analysis for nitrate by hydrazine reduction. Water Res 1:205–216

    Article  CAS  Google Scholar 

  • Kempers AJ, Luft AG (1988) Re-examination of the determination of environmental nitrate as nitrite by reduction with hydrazine. Anal 113:1117–1120

    Article  CAS  Google Scholar 

  • Keith A, Singh B, Singh BP (2011) Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ Sci Technol In press. doi:10.1021/es202186j

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173–1181

    Article  CAS  Google Scholar 

  • Krom MD (1980) Spectrophotometric determination of ammonia; a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Anal 105:305–316

    Article  CAS  Google Scholar 

  • Lalor BM, Cookson WR, Murphy DV (2007) Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem. Soil Biol Biochem 39:454–462

    Article  CAS  Google Scholar 

  • Lawes Agricultural Trust (2007) Genstat 10th Edition. VSN International Ltd, Hemel Hempstead, U.K

    Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil: 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management, science and technology. Earthscan, London, pp 1–12

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strat Glob Change 11:403–427

    Article  Google Scholar 

  • Lehmann J, Rillig M, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Peterson J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Ogawa M, Okimori Y, Takahashi F (2006) Carbon sequestration by carbonisation of biomass and forestation: three case studies. Mitig Adapt Strat Glob Change 11:429–444

    Article  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Plymouth Marine Laboratory (2007) Primer 6 and Permanova+β18. Primer E Ltd, Roborough

    Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosci 3:397–420

    Article  CAS  Google Scholar 

  • Rayment GE, Lyons DJ (2011) Alkaline earth carbonates. In: Rayment GE, Lyons DJ (eds) Soil chemical methods - Australasia. CSIRO Publishing, Melbourne, pp 415–425

    Google Scholar 

  • R Core Development Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine scale analysis of natural ammonia oxidising populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  • Scallan Ú, Liliensiek A, Clipson N, Connolly J (2008) RiboSort: a program for automated data preparation and exploratory analysis of microbial community fingerprints. Mol Ecol Notes 8:95–98

    Article  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob Biogeochem Cycles 14:777–793

    Article  CAS  Google Scholar 

  • Searle PL (1984) The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen – a review. Anal 109:549–568

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Sparling GP, Gupta VVSR, Zhu C (1993) Release of ninhydrin-reactive compounds during fumigation of soil to estimate microbial C and N. Soil Biol Biochem 25:1803–1805

    Article  CAS  Google Scholar 

  • Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452

    Article  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Steiner C, Das KC, Garcia M, Förster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiol 51:359–366

    Article  Google Scholar 

  • Stevenson BA, Sparling GP, Schipper LA, Degens BP, Duncan LC (2004) Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biol Biochem 36:49–55

    Article  CAS  Google Scholar 

  • Strong DT, Sale PWG, Helyar KR (1998) The influence of the soil matrix on nitrogen mineralisation and nitrification. II. The pore system as a framework for mapping the organisation of the soil matrix. Aust J Soil Res 36:855–872

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

DND and DVM were funded by the Grains Research and Development Corporation (GRDC) and DBG by an Australian Research Council (ARC) Discovery Grant (DP0985832). DLJ was funded by the Welsh Assembly Government. The authors thank Prof. R.J. Gilkes for his characterisation advice and Dr Y. Sawada and Mr M.N. Smirk for their technical assistance. The authors also acknowledge Dr P.S. Blackwell, of the Department of Agriculture and Food, Western Australia (DAFWA), for providing the soil, biochar and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Dempster.

Additional information

Responsible Editor: Johannes Lehmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm. 1

(PDF 5.07 kb)

Esm. 2

(PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dempster, D.N., Gleeson, D.B., Solaiman, Z.M. et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012). https://doi.org/10.1007/s11104-011-1067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1067-5

Keywords

Navigation