Skip to main content
Log in

Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We examined exudation of low molecular weight (LMW) organic compounds of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings in relation to metals. Scots pine seedlings, either colonized by one of six different ECM fungi or NM, were grown in Petri dishes containing glass beads and liquid growth medium and exposed to elevated concentrations of Pb, Cd and As. Exudation of LMW organic compounds (LMW organic acids (LMWOAs), amino acids and dissolved monosaccharides) and dissolved organic carbon (DOC) was determined qualitatively and quantitatively and exudation rates were calculated. Metals had a significant impact on exudation, especially of oxalate. For Pb and Cd treatments, exudation of oxalate and total LMWOAs generally increased by 15–45% compared to nutrient controls. Production of amino acids, dissolved monosaccharides and DOC was not significantly stimulated by exposure to metals; however, there were non-significant trends towards increased exudation. Finally, exudation generally increased in the presence of mycorrhizal seedlings compared to NM seedlings. The results suggest that ECM fungi may reduce the toxicity of metals to plants through significant increases in the production of organic chelators. Axenic conditions are required to assess the full potential for production of these molecules but their overall significance in soil ecosystems needs to be determined using additional experiments under more ecologically realistic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahonen-Jonnarth U, Finlay RD (2001) Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236:129–138

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth U, van Hees PAW, Lundström US, Finlay RD (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and metal concentrations. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Antkowiak R, Antkowiak WZ, Banczyk I, Mikolajczyk L (2003) A new phenolic metabolite, involutone, isolated from the mushroom Paxillus involutus. Can J Chem 81:118–124

    Article  CAS  Google Scholar 

  • Appuhn A, Joergensen RG, Raubuch M, Scheller E, Wilke B (2004) The automated determination of glucosamine, galactosamine, muramic acid and mannosamine in soil and root hydrolysates by HPLC. J Plant Nutr Soil Sci 167:17–21

    Article  CAS  Google Scholar 

  • Arvieu J-C, Leprince F, Plassard C (2003) Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Ann For Sci 60:815–821

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  PubMed  CAS  Google Scholar 

  • Besl H, Bresinsky A (1997) Chemosystematics of Suillaceae and Gomphidiaceae (suborder Suillaceae). Plant Syst Evol 206:223–242

    Article  Google Scholar 

  • Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay RD et al (2000) Differential responses of ectomycorrhizal fungi to metals in vitro. Mycol Res 104:1366–1371

    Article  CAS  Google Scholar 

  • Brunner I, Frey B (2000) Detection and localization of aluminium and heavy metals in ectomycorrhizal Norway spruce seedlings. Environ Pollut 108(2):121–128

    Article  PubMed  CAS  Google Scholar 

  • Casarin V, Plassard C, Souche G, Arvieu J-C (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469

    Article  CAS  Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Culbertson BJ, Furumo NC, Daniel SL (2007) Impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH by Sclerotinia sclerotiorum. FEMS Microbiol Lett 270:132–138

    Article  PubMed  CAS  Google Scholar 

  • Dahlén J, Hagberg J, Karlsson S (2000) Analysis of low molecular weight organic acids in water with capillary zone electrophoresis employing indirect photometric detection. Fresenius J Anal Chem 336:488–493

    Google Scholar 

  • Duddridge JA (1986) The development and ultrastructure of ectomycorrhizas 3. Compatible and incompatible interactions between Suillus grevillei Klotzsch Sing and 11 species of ectomycorrhizal hosts in vitro in the absence of exogenous carbohydrate. New Phytol 103:457–465

    Article  CAS  Google Scholar 

  • Ekblad A, Näsholm T (1996) Determination of chitin in fungi and mycorrhizal roots by an improved HPLC analysis of glucosamine. Plant Soil 178:29–35

    Article  CAS  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Frey B, Zierhold K, Brunner I (2000) Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abiesHebeloma crustuliniforme ectomycorrhizas. Plant Cell Environ 23:1257–1265

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals, Transley review. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation physiology and biogeochemical processes. Adv Microb Physiol 41:47–91

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Hartley JW, Cairney G, Freestone P, Meharg AA (1999) The effects of multiple metal contaminations on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. Environ Pollut 106:413–424

    Article  PubMed  CAS  Google Scholar 

  • Hartley-Whitaker J, Cairney JWG, Meharg AA (2000) Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218:31–42

    Article  CAS  Google Scholar 

  • Jarosz-Wilkolazka A, Graz M (2006) Organic acids production by white root Basidiomycetes in the presence of metallic oxides. Can J Microbiol 52:779–785

    Article  PubMed  CAS  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Jentschke G, Marschner P, Vodnik D (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizas. J Plant Physiol 153:97–104

    CAS  Google Scholar 

  • Jentschke G, Winter S, Godbold DL (1999) Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiol 19:23–30

    PubMed  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 00:1–21

    Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of simple C substrates. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Kim CG, Power SA, Bell JNB (2003) Effects of cadmium on growth and glucose utilization of ectomycorrhizal fungi in vitro. Mycorrhiza 13:223–226

    Article  PubMed  CAS  Google Scholar 

  • Kim CG, Power SA, Bell JNB (2004) Response of Pinus sylvestris seedlings to cadmium and mycorrhizal colonization. Water Air Soil Pollut 155:189–203

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Marschner P, Klam A, Jentschke G, Godbold DL (1998) Cation exchange capacity and lead sorption in ectomycorrhizal fungi. Plant Soil 205:93–98

    Article  CAS  Google Scholar 

  • Marschner P, Klam A, Jentschke G, Godbold DL (1999) Aluminium and lead tolerance in ectomycorrhizal fungi. J Plant Nutr Soil Sci 162:281–286

    Article  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic ectomycorrhizal fungi on the resistance of pine roots to pathogen infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. MjM Software, Gleneden Beach

    Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Myklestad SM, Skånoy E, Hestmann S (1997) A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar Chem 1:279–286

    Article  Google Scholar 

  • Näsholm T, Sandberg G, Ericsson A (1987) Quantitative analysis of amino acids in conifer tissues by high-performance liquid chromatography and fluorescence detection of their 9-fluorenylmethyl chloroformate derivatives. J Chromatogr A 396:225–236

    Article  Google Scholar 

  • Ott T, Fritz E, Polle A, Schützendübel A (2002) Characterization of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42:359–366

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Schilling JS, Jellison J (2006) Metal accumulation without enhanced oxalate secretion in wood degraded by brown rot fungi. Appl Environ Microbiol 72:5662–5665

    Article  PubMed  CAS  Google Scholar 

  • Schwarz EL, Roberts WL, Pasquali M (2005) Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection. Clin Chim Acta 354:83–90

    Article  PubMed  CAS  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering—site remediation, waste containment and emerging waste management technologies. Wiley, Hoboken

    Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Symbiotic solution to arsenic contamination. Nature 404:951–952

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Sun Y-P, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation-reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and microorganisms. Mycorrhiza 9:137–144

    Article  CAS  Google Scholar 

  • van Hees PAW, Rosling A, Essén S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol 169:367–378

    Article  PubMed  CAS  Google Scholar 

  • van Schöll L, Hoffland E, van Breemen N (2006) Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol 170:153–163

    Article  PubMed  CAS  Google Scholar 

  • Wallander H (2000) Use of strontium isotopes and foliar K content to estimate weathering of biotitic induced by pine seedlings colonized by ectomycorrhizal fungi from two different soils. Plant Soil 222:215–229

    Article  CAS  Google Scholar 

  • Zhu X, Cai J, Yang J, Su Q (2005) Determination of glucosamine in impure chitin samples by high-performance liquid chromatography. Carbohydr Res 340:1732–1738

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Cajsa Nygren at the Department of Forest Mycology and Pathology, SLU, Uppsala for assisting with the fungal culture isolate numbers and sequences. We also thank the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma M. Johansson.

Additional information

Responsible Editor: Ellis Hoffland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, E.M., Fransson, P.M.A., Finlay, R.D. et al. Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress. Plant Soil 313, 39–54 (2008). https://doi.org/10.1007/s11104-008-9678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9678-1

Keywords

Navigation