Skip to main content
Log in

The Symbiotic Requirements of Different Medicago Spp. Suggest the Evolution of Sinorhizobium Meliloti and S. Medicae with Hosts Differentially Adapted to Soil pH

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Nitrogen fixing rhizobia associated with the Medicago L. genus belong to two closely related species Sinorhizobium medicae and S. meliloti. To investigate the symbiotic requirements of different Medicago species for the two microsymbionts, 39 bacterial isolates from nodules of eleven Medicago species growing in their natural habitats in the Mediterranean basin plus six historical Australian commercial inocula were symbiotically characterized with Medicago hosts. The bacterial species allocation was first assigned on the basis of symbiotic proficiency with M. polymorpha. PCR primers specific for 16S rDNA were then designed to distinguish S. medicae and S. meliloti. PCR amplification results confirmed the species allocation acquired in the glasshouse. PCR fingerprints generated from ERIC, BOXA1R and nif-directed RPO1 primers revealed that the Mediterranean strains were genetically heterogenous. Moreover PCR fingerprints with ERIC and BOX primers showed that these repetitive DNA elements were specifically distributed and conserved in S. meliloti and S. medicae, clustering the strains into two divergent groups according to their species. Linking the Sinorhizobium species with the plant species of origin we have found that S. medicae was mostly associated with medics well adapted to moderately acid soils such as M. polymorpha, M. arabica and M. murex whereas S. meliloti was predominantly isolated from plants naturally growing on alkaline or neutral pH soils such as M. littoralis and M. tornata. Moreover in glasshouse experiments the S. medicae strains were able to induce well-developed nodules on M. murex whilst S. meliloti was not infective on this species. This feature provides a very distinguishing characteristic for S. medicae. Results from the symbiotic, genotypic and cultural characterization suggest that S. meliloti and S. medicae have adapted to different Medicago species according to the niches these medics usually occupy in their natural habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E G Biondi E Pilli E Giuntini M L Roumiantseva E E Andronov O P Onichtchouk O N Kurchak B V Simarov N I Dzyubenko A Mengoni M Bazzicalupo (2003) ArticleTitleGenetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region FEMS Microbiol. Lett. 220 207–13 Occurrence Handle10.1016/S0378-1097(03)00098-3 Occurrence Handle1:CAS:528:DC%2BD3sXisV2mur4%3D Occurrence Handle12670682

    Article  CAS  PubMed  Google Scholar 

  • M Bounejmate A D Robson (1992) ArticleTitleDifferential tolerance of genotypes of Medicago truncatula to low pH Aust. J. Agric. Res. 43 731–737

    Google Scholar 

  • J Brockwell F W Hely (1966) ArticleTitleSymbiotic characteristics of Rhizobium meliloti: an appraisal of the systematic treatment of nodulation and nitrogen fixation interactions between host and rhizobia of diverse origins Aust. J. Agric. Res. 17 885–899 Occurrence Handle10.1071/AR9660885

    Article  Google Scholar 

  • G Brundu I Camarda M Caredda G Garau S Maltoni P Deiana (2004) ArticleTitleA contribution to the study of the distribution of Medicago-Sinorhizobium symbiosis in Sardinia (Italy) Agricoltura Mediterranea 134 33–48

    Google Scholar 

  • B Brunel S Rome R Ziani J C Cleyet-Marel (1996) ArticleTitleComparison of nucleotide diversity and symbiotic properties of Rhizobium meliloti populations from annual Medicago species FEMS Microbiol. Ecol. 19 71–82 Occurrence Handle1:CAS:528:DyaK28Xhsleht74%3D

    CAS  Google Scholar 

  • G K Bullard R J Roughley D J Pulsford (2005) ArticleTitleReview of fifty years of the legume inoculant industry and inoculant quality control in Australia: 1953–2003 Aust. J. Exp. Agric. 45 127–140 Occurrence Handle10.1071/EA03159

    Article  Google Scholar 

  • N Charman R A Ballard (2004) ArticleTitleBurr medic (Medicago polymorpha L.) selections for improved N2 fixation with naturalised soil rhizobia Soil Biol. Biochem. 36 1331–1337 Occurrence Handle10.1016/j.soilbio.2004.04.014 Occurrence Handle1:CAS:528:DC%2BD2cXls1Wmtrk%3D

    Article  CAS  Google Scholar 

  • F J Bruijn Particlede (1992) ArticleTitleUse of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria Appl. Environ. Microbiol. 58 2180–2187 Occurrence Handle1637156

    PubMed  Google Scholar 

  • B D Eardly L A Materon N H Smith D A Johnson M D Rumbaugh R K Selander (1990) ArticleTitleGenetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti Appl. Environ. Microbiol. 56 187–194 Occurrence Handle1:STN:280:DyaK3c7nvFWmtQ%3D%3D Occurrence Handle1689982

    CAS  PubMed  Google Scholar 

  • C M Francis D J Gillespie (1981) ArticleTitleEcology and distribution of subterranean clover and Medicago spp. in Sardinia Austr. Plant Intro. Rev. 13 15–25

    Google Scholar 

  • F Galibert T M Finan S R Long A Puhler P Abola F Ampe et al. (2001) ArticleTitleThe composite genome of the legume symbiont Sinorhizobium meliloti Science 293 668–672 Occurrence Handle1:CAS:528:DC%2BD3MXls1KgtrY%3D Occurrence Handle11474104

    CAS  PubMed  Google Scholar 

  • D J Gillespie J A McComb (1991) ArticleTitleMorphology and distribution of species in the Medicago murex complex Can. J. Bot. 69 2655–2662

    Google Scholar 

  • J G Howieson M A Ewing (1986) ArticleTitleAcid tolerance in the Rhizobium meliloti-Medicago symbiosis Aust. J. Agric. Res. 37 55–64 Occurrence Handle10.1071/AR9860055

    Article  Google Scholar 

  • J G Howieson M A Ewing (1989) ArticleTitleAnnual species of Medicago differ greatly in their ability to nodulate on acid soils Aust. J. Agric. Res. 40 843–850 Occurrence Handle10.1071/AR9890843

    Article  Google Scholar 

  • J G Howieson M A Ewing M F D’Antuono (1988) ArticleTitleSelection for acid tolerance in Rhizobium meliloti Plant Soil 105 179–188 Occurrence Handle1:CAS:528:DyaL1cXhs1CmtbY%3D

    CAS  Google Scholar 

  • J G Howieson A Loi S J Carr (1995) ArticleTitleBiserrula pelecinus L. – a legume pasture species with potential for acid, duplex soils which is nodulated by a unique root-nodule bacteria Aust. J. Agric. Res. 46 997–1009 Occurrence Handle10.1071/AR9950997

    Article  Google Scholar 

  • J G Howieson B Nutt P Evans (2000) ArticleTitleEstimation of host-strain compatibility for symbiotic N-fixation between Rhizobium meliloti, several annual species of Medicago and Medicago sativa Plant Soil 219 49–55 Occurrence Handle10.1023/A:1004795617375 Occurrence Handle1:CAS:528:DC%2BD3cXjsVWlsb0%3D

    Article  CAS  Google Scholar 

  • J A G Irwin D L Lloyd K F Lowe (2001) ArticleTitleLucerne biology and genetic improvement – An analysis of past activities and future goals in Australia Aust. J. Agric. Res. 52 699–712 Occurrence Handle10.1071/AR00181

    Article  Google Scholar 

  • D C Jordan (1984) Family III. Rhizobiaceae Conn 1938, 321AL N R Krieg J G Holt (Eds) Bergey’s Manual of Systematic Bacteriology Williams & Wilkins London 234–242

    Google Scholar 

  • G Laguerre S M Nour V Macheret J S Pascal Drouin N Amarger (2001) ArticleTitleClassification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts Microbiology 187 981–993

    Google Scholar 

  • K A Lesins I Lesins (1979) Genus Medicago (Leguminosae): A Taxogenetic Study Kluwer Academic Publishers Dordrecht

    Google Scholar 

  • S Niemann T Dammann-Kalinowski A Nagel A Puhler W Selbitschka (1999) ArticleTitleGenetic basis of enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint pattern in Sinorhizobium meliloti and identification of S. meliloti employing PCR primers derived from an ERIC-PCR fragment Arch. Microbiol. 172 22–30 Occurrence Handle10.1007/s002030050735 Occurrence Handle1:CAS:528:DyaK1MXmsVyitb8%3D Occurrence Handle10398748

    Article  CAS  PubMed  Google Scholar 

  • D W Puckridge R J French (1983) ArticleTitleThe annual legume pasture in cereal-lay farming systems of Southern Australia: a review Agric. Ecosyst. Environ. 9 229–267

    Google Scholar 

  • A E Richardson L A Viccars J M Watson A H Gibson (1995) ArticleTitleDifferentiation of Rhizobium strains using the polymerase chain reaction with random and directed primers Soil Biol. Biochem. 27 515–524 Occurrence Handle10.1016/0038-0717(95)98626-Y Occurrence Handle1:CAS:528:DyaK2MXlt12rsbg%3D

    Article  CAS  Google Scholar 

  • A D Robson (1969) ArticleTitleSoil factors affecting the distributionof annual Medicago species J. Aust. Inst. Agric. Sci. 35 154–167 Occurrence Handle1:CAS:528:DyaE3cXlsVWjsw%3D%3D

    CAS  Google Scholar 

  • S Rome B Brunel P Normand M Fernandez J C Cleyet-Marel (1996a) ArticleTitleEvidence that two genomic species of Rhizobium are associated with Medicago truncatula Arch. Microbiol. 165 285–288 Occurrence Handle10.1007/s002030050328 Occurrence Handle1:STN:280:DyaK283hsVKmuw%3D%3D

    Article  CAS  Google Scholar 

  • S Rome J C Cleyet-Marel L A Materon P Normand B Brunel (1997) ArticleTitleRapid identification of Medicago nodulating strains by using two oligonucleotide probes complementary to 16S rDNA sequences Can. J. Microbiol. 43 854–861 Occurrence Handle1:CAS:528:DyaK2sXmslCitbk%3D Occurrence Handle9336948 Occurrence Handle10.1139/m97-124

    Article  CAS  PubMed  Google Scholar 

  • S Rome M P Fernandez B Brunel P Normand J C Cleyet-Marel (1996b) ArticleTitleSinorhizobium medicae sp nov., isolated from annual Medicago spp Int. J. Syst. Bacteriol. 46 972–980 Occurrence Handle1:CAS:528:DyaK28XmsFyjurc%3D Occurrence Handle10.1099/00207713-46-4-972

    Article  CAS  Google Scholar 

  • M Sanchez-Contreras X Lloret M Martin M Villacieros I Bonilla R Rivilla (2000) ArticleTitlePCR use of highly conserved DNA regions for identification of Sinorhizobium meliloti Appl. Environ. Microbiol. 66 3621–3623 Occurrence Handle10.1128/AEM.66.8.3621-3623.2000 Occurrence Handle1:CAS:528:DC%2BD3cXlsFartr0%3D Occurrence Handle10919829

    Article  CAS  PubMed  Google Scholar 

  • J T Versalovic T Koeuth J R Lupski (1991) ArticleTitleDistribution of repetitive DNA sequences in eubacteria and application to fingerprinting bacterial genomes Nucleic Acids Res. 19 6823–6831 Occurrence Handle1:CAS:528:DyaK38XnslelsA%3D%3D Occurrence Handle1762913

    CAS  PubMed  Google Scholar 

  • J Versalovic M Schneider F J Bruijn Particlede J R Lupski (1994) ArticleTitleGenomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction Meth. Cell. Mol. Biol. 5 25–40 Occurrence Handle1:CAS:528:DyaK2MXhtVOmsLc%3D

    CAS  Google Scholar 

  • K Zribi R Mhamdi T Huguet M E Aouani (2004) ArticleTitleDistribution and genetic diversity of rhizobia nodulating natural populations of Medicago truncatula in Tunisian soils Soil Biol. Biochem. 6 903–908

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.G. Howieson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garau, G., Reeve, W., Brau, L. et al. The Symbiotic Requirements of Different Medicago Spp. Suggest the Evolution of Sinorhizobium Meliloti and S. Medicae with Hosts Differentially Adapted to Soil pH. Plant Soil 276, 263–277 (2005). https://doi.org/10.1007/s11104-005-0374-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-0374-0

Keywords

Navigation