Skip to main content
Log in

The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43(6):534–552. doi:10.1016/j.plipres.2004.09.002

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. doi:10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  • Bamel K, Gupta SC, Gupta R (2007) Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings. Life Sci 80(24–25):2393–2396. doi:10.1016/j.lfs.2007.01.039

    Article  PubMed  CAS  Google Scholar 

  • Baudouin E, Charpenteau M, Roby D, Marco Y, Ranjeva R, Ranty B (1997) Functional expression of a tobacco gene related to the serine hydrolase family—esterase activity towards short-chain dinitrophenyl acylesters. Eur J Biochem 248(3):700–706

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20(6):1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Beri V, Gupta R (2007) Acetylcholinesterase inhibitors neostigmine and physostigmine inhibit induction of alpha-amylase activity during seed germination in barley, Hordeum vulgare var. Jyoti. Life Sci 80(24–25):2386–2388. doi:10.1016/j.lfs.2007.02.018

    Article  PubMed  CAS  Google Scholar 

  • Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439. doi:10.1186/1471-2105-7-439

    Article  PubMed  Google Scholar 

  • Clauss K, Baumert A, Nimtz M, Milkowski C, Strack D (2008) Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J 53(5):802–813. doi:10.1111/j.1365-313X.2007.03374.x

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Delmonte Corrado MU, Politi H, Ognibene M, Angelini C, Trielli F, Ballarini P, Falugi C (2001) Synthesis of the signal molecule acetylcholine during the developmental cycle of Paramecium primaurelia (Protista, Ciliophora) and its possible function in conjugation. J Exp Biol 204(Pt 11):1901–1907

    PubMed  CAS  Google Scholar 

  • Denker E, Chatonnet A, Rabet N (2008) Acetylcholinesterase activity in Clytia hemisphaerica (Cnidaria)q. Chem Biol Interact 175(1–3):125–128. doi:10.1016/j.cbi.2008.03.004

    Article  PubMed  CAS  Google Scholar 

  • Dent JA (2006) Evidence for a diverse cys-loop ligand-gated ion channel superfamily in early bilateria. J Mol Evol 62(5):523–535. doi:10.1007/s00239-005-0018-2

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. doi:10.1093/nar/gkn180

  • Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21(3):587–598. doi:10.1093/molbev/msh049/msh049

    Article  PubMed  CAS  Google Scholar 

  • Domenech CE, Garrido MN, Lisa TA (1991) Pseudomonas aeruginosa cholinesterase and phosphorylcholine phosphatase: two enzymes contributing to corneal infection. FEMS Microbiol Lett 82(2):131–135

    Article  CAS  Google Scholar 

  • Earle JP, Barclay SL (1986) A cell surface-localized acetylcholinesterase in the cellular slime mold Polysphondylium Violaceum. FEMS Microbiol Lett 35(1):83–88

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protocols 2(4):953–971

    Article  CAS  Google Scholar 

  • Goloboff P, Farris S, KN (2000) TNT (Tree analysis using New Technology). ver. 1.1, edn. Published by the authors, Tucumán

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5(2):164–166

    Google Scholar 

  • Fletcher SP, Geyer BC, Smith A, Evron T, Joshi L, Soreq H, Mor TS (2004) Tissue distribution of cholinesterases and anticholinesterases in native and transgenic tomato plants. Plant Mol Biol 55(1):33–43

    Article  PubMed  CAS  Google Scholar 

  • Fluck RA, Jaffe MJ (1974) The distribution of cholin esterases in plant species. Phytochemistry 13(11):2475–2480

    Article  CAS  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7):685–695

    Article  PubMed  CAS  Google Scholar 

  • Geyer BC, Kannan L, Cherni I, Woods RR, Soreq H, Mor TS (2010) Transgenic plants as a source for the bioscavenging enzyme, human butyrylcholinesterase. Plant Biotechnol J 8(8):873–886. doi:10.1111/j.1467-7652.2010.00515.x

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Gupta R (1997) A survey of plants for reference of cholinesterase activity. Phytochemistry 46(5):827–831

    Article  CAS  Google Scholar 

  • Gupta A, Vijayaraghavan MR, Gupta R (1998) The presence of cholinesterase in marine algae. Phytochemistry 49(7):1875–1877

    Article  CAS  Google Scholar 

  • Hartmann E, Gupta R (1989) Acetylcholine as a signaling system in plants. In: Boss WF, Morre DJ (eds) Second messengers in plant growth and development plant biology, vol 6. Alan R. Liss Inc., New York, pp 257–288

    Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, du Choi S, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227(3):539–558. doi:10.1007/s00425-007-0637-5

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72(15):1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Jaffe MJ (1970) Evidence for the regulation of phytochrome-mediated process in bean roots by the neurohumor, acetylcholine. Plant Physiol 46(6):768–777

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282

    PubMed  CAS  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6(16):4586–4598. doi:10.1002/pmic.200600020

    Article  PubMed  CAS  Google Scholar 

  • Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M (2007) Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80(24–25):2206–2209. doi:10.1016/j.lfs.2007.01.059

    Article  PubMed  CAS  Google Scholar 

  • Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH (2008) GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 374(4):693–698

    Article  PubMed  CAS  Google Scholar 

  • Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, Suzuki K, Ishikawa A, Koshi T, Matsui R, Muto S, Matsui M (2008) RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. Plant Physiol 147(4):1924–1935. doi:10.1104/pp.108.118364

    Article  PubMed  CAS  Google Scholar 

  • Kram BW, Bainbridge EA, Perera MA, Carter C (2008) Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68(1–2):173–183. doi:10.1007/s11103-008-9361-1

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58(2):235–245. doi:10.1111/j.1365-313X.2008.03772.x

    Article  PubMed  CAS  Google Scholar 

  • Le Novere N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40(2):155–172

    Article  PubMed  Google Scholar 

  • Lo YC, Lin SC, Shaw JF, Liaw YC (2003) Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330(3):539–551

    Article  PubMed  CAS  Google Scholar 

  • Madhavan S, Sarath G, Lee BH, Pegden RS (1995) Guard cell protoplasts contain acetylcholinesterase activity. Plant Sci 109(2):119–127

    Article  CAS  Google Scholar 

  • Momonoki YS (1997) Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol 114(1):47–53

    PubMed  CAS  Google Scholar 

  • Momonoki YS, Bandurski RS (1994) Asymmetric distribution of acetylcholinesterase activity and safranin distribution after a gravity stimulation in maize. Plant Physiol Rockville 105(1 Suppl):22

    Google Scholar 

  • Momonoki YS, Kawai N, Takamure I, Kowalczyk S (2000) Gravitropic response of acetylcholinesterase and IAA-inositol synthase in lazy rice. Plant Prod Sci 3(1):17–23

    Article  Google Scholar 

  • Mor TS, Soreq H (2004) Human cholinesterases from plants for detoxification. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, Inc., New York, pp 564–567

    Google Scholar 

  • Mor TS, Sternfeld M, Soreq H, Arntzen CJ, Mason HS (2001) Expression of recombinant human acetylcholinesterase in transgenic tomato plants. Biotechnol Bioeng 75(3):259–266

    Article  PubMed  CAS  Google Scholar 

  • Muralidharan M, Soreq H, Mor TS (2005) Characterizing pea acetylcholinesterase. Chemico-Biol Interact 157–158:406–407

    Article  Google Scholar 

  • Naranjo MA, Forment J, Roldan M, Serrano R, Vicente O (2006) Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell Environ 29(10):1890–1900. doi:10.1111/j.1365-3040.2006.01565.x

    Article  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. doi:10.1006/jmbi.2000.4042

    Article  PubMed  CAS  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10):2832–2847. doi:10.1105/tpc.105.034819

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23(9):1073–1079. doi:10.1093/bioinformatics/btm076

    Article  PubMed  CAS  Google Scholar 

  • Raineri M, Modenesi P (1986) Preliminary evidence for a cholinergic-like system in lichen morphogenesis. Histochem J 18(11–12):647–657

    Article  PubMed  CAS  Google Scholar 

  • Riov J, Jaffe MJ (1973) A Cholinesterase from bean roots and its inhibition by plant growth retardants. Experientia 29(3):264–265

    Article  CAS  Google Scholar 

  • Roshchina VV (2001) Nerotransmitters in plant life. Science Publishers Inc., Enfield

    Google Scholar 

  • Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguri S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138(3):1359–1371

    Article  PubMed  CAS  Google Scholar 

  • Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307(1–2):249–264. doi:10.1007/s11010-007-9603-6

    PubMed  CAS  Google Scholar 

  • Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51(1):123–131. doi:10.1093/pcp/pcp173

    Article  PubMed  CAS  Google Scholar 

  • Tezuka T, Akita I, Yoshino N, Suzuki Y (2007) Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol 164(7):878–885. doi:10.1016/j.jplph.2006.05.013

    Article  PubMed  CAS  Google Scholar 

  • Tretyn A, Kendrick RE (1991) Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev 57(1):33–73

    Article  Google Scholar 

  • Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20(5):178–179

    Article  PubMed  CAS  Google Scholar 

  • Walker RJ, Brooks HL, Holden-Dye L (1996) Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113 Suppl (S3–S33):1996/1901/1901

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154(8):1558–1571. doi:10.1038/bjp.2008.185

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1999) The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 26(3):198–205

    Article  PubMed  CAS  Google Scholar 

  • Woo YM, Park HJ, Su’udi M, Yang JI, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65(1–2):125–136. doi:10.1007/s11103-007-9203-6

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Fujii T, Kanai T, Amo T, Imanaka T, Nishimasu H, Wakagi T, Shoun H, Kamekura M, Kamagata Y, Kato T, Kawashima K (2005) Expression of acetylcholine (ACh) and ACh-synthesizing activity in Archaea. Life Sci 77(16):1935–1944. doi:10.1016/j.lfs.2005.01.026

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16(2):500–509. doi:10.1105/tpc.018044

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jacob Jones, Alicja Skaleca-Ball and Barbara Beauchamp for their valued technical assistance. We also acknowledge Stephen Chelladurai’s input for the phylogenetic analysis and Dr. Nobuyuki Matoba and Dr. Hugh Mason for helpful discussions. This work was funded in part by the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke under the U-54-NSO58183-01 award—a consortium grant awarded to USAMRICD and contracted to TSM under the research cooperative agreement number W81XWH-07-2-0023. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal USA government. MM was supported in part by the Arizona State University’s School of Life Sciences Completion Research Assistantship scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsafrir S. Mor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralidharan, M., Buss, K., Larrimore, K.E. et al. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase. Plant Mol Biol 81, 565–576 (2013). https://doi.org/10.1007/s11103-013-0021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0021-8

Keywords

Navigation