Skip to main content
Log in

Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Coumarins (1,2-benzopyrones) are ubiquitously found in higher plants where they originate from the phenylpropanoid pathway. They contribute essentially to the persistence of plants being involved in processes such as defense against phytopathogens, response to abiotic stresses, regulation of oxidative stress, and probably hormonal regulation. Despite their importance, major details of their biosynthesis are still largely unknown and many P450-dependent enzymatic steps have remained unresolved. Ortho-hydroxylation of hydroxycinnamic acids is a pivotal step that has received insufficient attention in the literature. This hypothetical P450 reaction is critical for the course for the biosynthesis of simple coumarin, umbelliferone and other hydroxylated coumarins in plants. Multiple P450 enzymes are also involved in furanocoumarin synthesis, a major class of phytoalexins derived from umbelliferone. Several of them have been characterized at the biochemical level but no monooxygenase gene of the furanocoumarin pathway has been identified yet. This review highlights the major steps of the coumarin pathway with emphasis on the cytochrome P450 enzymes involved. Recent progress and the outcomes of novel strategies developed to uncover coumarin-committed CYPs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akeson WR, Gorz HJ, Haskins FA (1963) Effect of genotype and growth stage on distribution of mellilotic acid, O-coumaric acid, and coumarinic acid in Melilotus alba Desr. Crop Sci 3:167–171

    Google Scholar 

  • Anaya AL, Macías-Rubalcava M, Cruz-Ortega R, Garcí a-Santana C, Sanchez-Monterrubio PN, Hernández-Bautista BE, Mata R (2005) Allelochemicals from Stauranthus perforatus, a Rutaceous tree of the Yucatan Peninsula, Mexico. Phytochemistry 66:487–494

    Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    PubMed  CAS  Google Scholar 

  • Baskin JM, Ludlow CJ, Harris TM, Wolf FT (1967) Psoralen, an inhibitor in the seeds of Psoralea subacaulis (Leguminosae). Phytochemistry 6:1209–1213

    CAS  Google Scholar 

  • Bednarek P, Schneider B, Svatos A, Oldham N, Hahlbrock K (2005) Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 138:1058–1070

    PubMed  CAS  Google Scholar 

  • Beier RC (1990) Natural pesticides and bioactive components in foods. Rev Environ Contam Toxicol 113:47–137

    PubMed  CAS  Google Scholar 

  • Beier RC, Oertli EH (1983) Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry 22:2595–2597

    CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR (1993) Furanocoumarin metabolism in Papilio polyxenes—Biochemistry, genetic variability, and ecological significance. Oecologia 95:370–375

    Google Scholar 

  • Berenbaum MR, Zangerl AR (1998) Chemical phenotype matching between a plant and its insect herbivore. Proc Natl Acad Sci 95:13743–13748

    PubMed  CAS  Google Scholar 

  • Bertea CM, Schalk M, Karp F, Maffei M, Croteau R (2001) Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch Biochem Biophys 390:279–286

    Google Scholar 

  • Bohlmann J, Gibraltarskaya E, Eilert U (1995) Elicitor induction of furanocoumarin biosynthetic pathway in cell cultures of Ruta graveolens. Plant Cell Tissue Organ Cult 43:155–161

    CAS  Google Scholar 

  • Bourgaud F, Allard N, Guckert A, Forlot P (1989) Natural sources for furocoumarins. In: Fitzpatrick T, Forlot P, Pathak MA, Urbach F (eds) Psoralens, past, present and future of Photochemoprotection and other biological activities. J. Libbey Eurotext, Paris, pp 301–306

  • Brophy JJ, Goldsack RJ, Fookes CJR, Forster PI (2002) The essential oils of Pentaceras australe (Rutaceae). J Essent Oil Res 14:348–350

    CAS  Google Scholar 

  • Brown SA (1962) Biosynthesis of coumarin and herniarin in lavender. Science 137:977–978

    PubMed  CAS  Google Scholar 

  • Brown SA (1981) Coumarins. In: Stumpf PK, Conn EE (eds) The biochemistry of plants—A comprehensive treatise, vol 7. Academic Press, New York, pp 269–300

    Google Scholar 

  • Brown SA (1985) Biosynthesis of 6,7-dihydroxycoumarin in Cichorium intybus. Can J Biochem Cell Biol 63:292–295

    CAS  Google Scholar 

  • Brown SA (1986) Biosynthesis of Daphnetin in Daphne mezereum L. Z Naturforsch 41c:247–252

    Google Scholar 

  • Brown SA, March RE, Rivett DEA, Thompson HJ (1988) Intermediates in the formation of puberulin by Agathosma puberula. Phytochemistry 27:391–395

    CAS  Google Scholar 

  • Brown SA, Rivett DEA, Thompson HJ (1984) Elaboration of the 6,7,8-hydroxylation pattern in simple coumarins: biosynthesis of puberulin. Zeitschrift Fur Naturforschung 39:31–37

    Google Scholar 

  • Brown SA, Sampathkumar S (1977) The biosynthesis of isopimpinellin. Can J Biochem Cell Biol 55:686–692

    Article  CAS  Google Scholar 

  • Brown SA, Towers GH, Wright D (1960) Biosynthesis of the coumarins. Tracer studies on coumarin formation in Hierochloe odorata and Melilotus officinalis. Can J Biochem Physiol 38:143–156

    PubMed  CAS  Google Scholar 

  • Cabello-Hurtado F, Durst F, Jorrin JV, Werck-Reichhart D (1998) Coumarins in helianthus tuberosus: characterization, induced accumulation and biosynthesis. Phytochemistry 49:1029–1036

    CAS  Google Scholar 

  • Caporale G, Innocenti G, Guiotto A, Rodighiero P, Dall’Acqua F (1981) Biogenesis of linear O-alkylfuranocoumarins: a new pathway involving 5-hydroxymarmesin. Phytochemistry 20:1283–1287

    CAS  Google Scholar 

  • Chong J, Baltz R, Schmitt C, Belffa R, Fritig B, Saindrenan P (2002) Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, weakens virus resistance. Plant Cell 14:1093–1107

    PubMed  CAS  Google Scholar 

  • Clemens S, Barz W (1996) P450-dependent methylenedioxy bridge formation in Cicer arietinum. Phytochemistry 41:457–460

    CAS  Google Scholar 

  • Conn EE (1984) Compartmentation of secondary compounds. In Boudet AM, Alibert G, Lea PJ (eds) Membranes and compartmention in the regulaton of plant function. Oxford University Press, Oxford, pp 1–28

    Google Scholar 

  • Coquoz JL, Buchala A, Metraux JP (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117:1095–1101

    PubMed  CAS  Google Scholar 

  • Coxon DT, Curtis RF, Price KR, Levett G (1973) Abnormal metabolites produced by Daucus carota roots stored under conditions of stress. Phytochemistry 12:1881–1885

    CAS  Google Scholar 

  • Croteau RB, Davis EM, Ringer KL, Wildung MR (2005) (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92:562–577

    PubMed  CAS  Google Scholar 

  • Dall’Acqua F, Vedaldi D, Recher M (1978) The photoreaction between furocoumarins and various DNA with different base compositions. Photochem Photobiol 27:33–36

    Google Scholar 

  • Damjanovich S, Gaspar R, Panyi G (2004) An alternative to conventional immunosuppression: Small-molecule inhibitors of K(v)1.3 channels. Mol Interv 4:250−+

    Google Scholar 

  • Dhillon DS, Brown SA (1976) Localization, purification and characterization of a dimethylallylpyrophosphate: umbelliferone dimethylallyltransferase from Ruta graveolens. Arch Biochem Biophys 177:74–83

    PubMed  CAS  Google Scholar 

  • Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H Jr (1994) Biochemical Plant Responses to Ozone (IV. Cross-Induction of Defensive Pathways in Parsley (Petroselinum crispum L.) Plants). Plant Physiol 104:67–74

    PubMed  CAS  Google Scholar 

  • Ehlers D, Pfister M, Bork WR, Toffelnadolny P (1995) HPLC Analysis of Tonka Bean Extracts. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung 201:278–282

    PubMed  CAS  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R, Werck-Reichhart D (2006) Cytochromes P450 in the phenolic metabolism. Phytochem Rev DOI 10.1007/s11101-006-9025-1 (this issue)

  • Eilert U (1989) Elicitor induction of secondary metabolism in dedifferenciated in vitro system of Ruta graveolens. In: Kurz WGW (ed) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 219–228

    Google Scholar 

  • Ellis BE, Amrhein N (1971) The ‘NIH-shift’ during aromatic ortho-hydroxylation in higher plants. Phytochemistry 10:3069–3072

    CAS  Google Scholar 

  • Ellis BE, Brown SA (1974) Isolation of dimethylallylpyrophosphate: umbelliferone dimethylallyltransferase from Ruta graveolens. Can J Biochem 52:734–738

    PubMed  CAS  Google Scholar 

  • Estévez-Braun A, González AG (1997) Coumarins. In: Natural Product Reports. pp 465–475

  • Floss HG, Mothes U (1964) On the biochemistry of furocoumarin in Pimpinella magna. Z Naturforsch B 19:770–771

    PubMed  CAS  Google Scholar 

  • Fouin-Fortunet H, Tinel M, Descatoire V, Letteron P, Larrey D, Geneve J, Pessayre D (1986) Inactivation of cytochrome P-450 by the drug methoxsalen. J Pharmacol Exp Ther 236:237–247

    PubMed  CAS  Google Scholar 

  • Fraissinet-Tachet L, Baltz R, Chong J, Kauffmann S, Fritig B, Saindrenan P (1998) Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Lett 437:319–323

    PubMed  CAS  Google Scholar 

  • Fritig B, Hirth L, Ourisson G (1970) Biosynthesis of the coumarins: scopoletin formation in tobacco tissue cultures. Phytochemistry 9:1963–1975

    CAS  Google Scholar 

  • George HL, VanEtten HD (2001) Characterization of pisatin-inducible cytochrome P450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. Fungal Genet Biol 33:37–48

    PubMed  CAS  Google Scholar 

  • Gestetner B, Conn EE (1974) 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba. Arch Biochem Biophys 163:617–624

    PubMed  CAS  Google Scholar 

  • Giesemann A, Biehl B, Lieberei R (1986) Identification of scopoletin as a phytoalexin of the rubber tree Hevea brasiliensis. J Phytopathol 117:373–376

    CAS  Google Scholar 

  • Gomez-Vasquez R, Day R, Buschmann H, Randles S, Beeching JR, Cooper RM (2004) Phenylpropanoids, phenylalanine ammonia lyase and Peroxidases in elicitor-challenged cassava (Manihot esculenta) suspension cells and leaves. Ann Bot 94:87–97

    PubMed  CAS  Google Scholar 

  • Gravot A, Larbat R, Hehn A, Lievre K, Gontier E, Goergen J, Bourgaud F (2004) Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives : cloning and characterization of a C4H from a psoralen producing plant - Ruta graveolens-exhibiting a low sensitivity to psoralen inactivation. Arch Biochem Biophys 422:71–80

    PubMed  CAS  Google Scholar 

  • Gutierrez M-C, Parry A, Tena M, Jorrin J, Edwards R (1995) Abiotic elicitation of coumarin phytoalexins in sunflower. Phytochemistry 38:1185–1191

    Google Scholar 

  • Hagemeier J, Batz O, Schmidt J, Wray V, Hahlbrock K, Strack D (1999) Accumulation of phthalides in elicitor-treated cell suspension cultures of Petroselinum crispum. Phytochemistry 51:629–635

    CAS  Google Scholar 

  • Hamerski D, Beier RC, Kneusel RE, Matern U, Himmelspach K (1990a) Accumulation of coumarins in elicitor-treated cell suspension cultures of Ammi majus. Phytochemistry 29:1137–1142

    CAS  Google Scholar 

  • Hamerski D, Matern U (1988a) Biosynthesis of psoralens. Psoralen 5-monooxygenase activity from elicitor-treated Ammi majus cells. FEBS Lett 239:263–265

    CAS  Google Scholar 

  • Hamerski D, Matern U (1988b) Elicitor-induced biosynthesis of psoralens in Ammi majus L. suspension cultures. Microsomal conversion of demethylsuberosin into (+)marmesin and psoralen. Eur J Biochem 171:369–375

    CAS  Google Scholar 

  • Hamerski D, Schmitt D, Matern U (1990b) Induction of two prenyltransferases for the accumulation of coumarin phytoalexins in elicitor-treated Ammi majus cell suspension cultures. Phytochemistry 29:1131–1135

    CAS  Google Scholar 

  • Harborne JB (1999) Classes and functions of secondary products from plants. In Walton NJ, Brown DE (eds) Chemicals from plants. Imperial College Press, London, pp 1–25

    Google Scholar 

  • Hauffe KD, Hahlbrock K, Scheel D (1986) Elicitor-stimulated furanocoumarin biosynthesis in cultured parsley cells: S-adenosyl-L-methionine: bergaptol and S-adenosyl-L-methionine: xanthotoxol O-methyltransferases. Z Naturforsch 41:228–239

    CAS  Google Scholar 

  • Hehmann M, Lukacin R, Ekiert H, Matern U (2004) Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase. Eur J Biochem 271:932–940

    PubMed  CAS  Google Scholar 

  • Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K, Sato F (2003) Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J Biol Chem 278:38557–38565

    PubMed  CAS  Google Scholar 

  • Innocenti G, Dall’Acqua F, Caporale G (1983) The role of 5,8-dihydroxypsoralen in the biosynthesis of isopimpinellin. Phytochemistry 22:2207–2209

    CAS  Google Scholar 

  • Kai K, Shimizu B-i, Mizutani M, Watanabe K, Sakata K (2006) Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry 67:379–386

    PubMed  CAS  Google Scholar 

  • Katz VA, Thulke OU, Conrath U (1998) A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol 117:1333–1339

    PubMed  CAS  Google Scholar 

  • Kawase M, Sakagami H, Motohashi N, Hauer H, Chatterjee SS, Spengler G, Vigyikanne AV, Molnar A, Molnar J (2005) Coumarin derivatives with tumor-specific cytotoxicity and multidrug resistance reversal activity. In Vivo 19:705–711

    PubMed  CAS  Google Scholar 

  • Kayser O, Kolodziej H (1995) Highly oxygenated coumarins from Pelargonium sidoides. Phytochemistry 39:1181–1185

    CAS  Google Scholar 

  • Kindl H (1971) Ortho-hydroxylation of aromatic carboxylic acids in higher plants. Hoppe Seylers Z Physiol Chem 352:78–84

    PubMed  CAS  Google Scholar 

  • Kneusel RE (1987) Phenolische Verbindungen in der pflanzlichen Abwehr. Eine 4-Cumaroyl-CoA 3-Hydroxylase und eine S-Adenosyl-L-methionin:Kaffeoyl-CoA 3-O-Methyltransferase in Zellsuspensionskulturen von Petersilie (Petroselinum crispum) Diploma Thesis, Universität Freiburg

  • Koenigs LL, Trager WF (1998) Mechanism-based inactivation of cytochrome P450 2B1 by 8-methoxypsoralen and several other furocoumarins. Biochemistry-US 37:13184–13193

    CAS  Google Scholar 

  • Kùc J (1982) Phytoalexins from the Solanaceae. In: Bailey JA, Mansfield JW (eds) Phytoalexins. Blackie & Sons, Glasgow, pp 81–105

    Google Scholar 

  • Latte KP, Kayser O, Tan N, Kaloga M, Kolodziej H (2000) Unusual coumarin patterns of Pelargonium species forming the origin of the traditional herbal medicine umckaloabo. Zeitschrift Fur Naturforschung C-a J Biosci 55:528–533

    CAS  Google Scholar 

  • Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I (1995) Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco catalyses salicylic acid biosynthesis. Proc Natl Acad Sci USA 92:10413–10417

    PubMed  CAS  Google Scholar 

  • Maier W, Schmidt J, Nimtz M, Wray V, Strack D (2000) Secondary products in mycorrhizal roots of tobacco and tomato. Phytochemistry 54:473–479

    PubMed  CAS  Google Scholar 

  • Malaiyandi V, Sellers EM, Tyndale RF (2005) Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther 77:145–158

    PubMed  CAS  Google Scholar 

  • Mays DC, Hilliard JB, Wong DD, Gerber N (1989) Activation of 8-methoxypsoralen by cytochrome P-450 Enzyme kinetics of covalent binding and influence of inhibitors and inducers of drug metabolism. Biochem Pharmacol 15:1647–1655

    Google Scholar 

  • McKey D (1979) The distribution of secondary compounds within plants. In: Rosenthal GA, Janzn DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, New York, pp 56–133

    Google Scholar 

  • Milesi S, Massot B, Gontier E, Bourgaud F, Guckert A (2001) Ruta graveolens L.: a promising species for the production of furocoumarins. Plant Sci 161:189–199

    CAS  Google Scholar 

  • Miller KG, Poole CF, Pawlowski TMP (1996) Classification of the botanical origin of cinnamon by solid-phase microextraction and gas chromatography. Chromatographia 42:639–646

    CAS  Google Scholar 

  • Mueller RL (2004) First-generation agents: aspirin, heparin and coumarins. Best Pract Res Clin Haematol 17:23–53

    PubMed  CAS  Google Scholar 

  • Murray M, Redy GF (1990) Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents. Pharmacol Rev 42:85–101

    PubMed  CAS  Google Scholar 

  • Murray RD (1991) Progress in the chemistry of organic natural products. In: Naturally occurring plant coumarins, vol 58. pp 83–316

  • Murray RD, Mendéz J, Brown SA (1982) The Natural Coumarins. Occurrence Chemistry and Biochemistry. Wiley, New York

    Google Scholar 

  • Ndong C, Anzellotti D, Ibrahim RK, Huner NPA, Sarhan F (2003) Daphnetin methylation by a novel O-methyltransferase is associated with cold acclimation and photosystem II excitation pressure in rye. Journal of Biological Chemistry 278:6854–6861

    PubMed  CAS  Google Scholar 

  • Nguyen C, Bouque V, Bourgaud F, Guckert A (1997) Quantification of daidzein and furanocoumarin conjugates of Psoralea cinerea L (Leguminosae). Phytochem anal 8:27–31

    CAS  Google Scholar 

  • Nitao JK, Zangerl AR (1987) Floral development and chemical defense allocation in wild parsnip (Pastinaca sativa). Ecology 68:521–529

    Google Scholar 

  • Paine MF, Criss AB, Watkins PB (2005) Two major grapefruit juice components differ in time to onset of intestinal CYP3A4 inhibition. J Pharmacol Exp Ther 312:1151–1160

    PubMed  CAS  Google Scholar 

  • Pastirova A, Repcak M, Eliasova A (2004) Salicylic acid induces changes of coumarin metabolites in Matricaria chamomilla L. Plant Sci 167:819–824

    CAS  Google Scholar 

  • Pierrel MA, Batard Y, Kazmaier M, Mignotte-Vieux C, Durst F, Werck-Reichhart D (1994) Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast Substrate specificity of a cinnamate hydroxylase. Eur J Biochem 224:835–844

    PubMed  CAS  Google Scholar 

  • Plumas JL, Drillat P, Jacob MC, Richard MJ, Favrot MC (2003) Extracorporeal photochemotherapy for treatment of clonal T cell proliferations. Bull Cancer 90:763–770

    PubMed  Google Scholar 

  • Ranjeva R, Alibert G, Boudet AM (1977) Metabolisme des composes phenoliques chez le petunia V Utilisation de la phenylalanine par des chloroplastes isoles. Plant Sci Lett 10:225–234

    CAS  Google Scholar 

  • Repcak M, Imrich J, Franekova M (2001) Umbelliferone, a stress metabolite of Chamomilla recutita (L) Rauschert. J Plant Physiol 158:1085–1087

    CAS  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau J-P, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    PubMed  CAS  Google Scholar 

  • Sarker SD, Armstrong JA, Gray AI, Waterman PG (2002) Pyranocoumarins from Eriostemon apiculatus. Phytochemistry 22:641–644

    Google Scholar 

  • Sato M (1967) Metabolism of phenolic substances by the chloroplasts–III : Phenolase as an enzyme concerning the formation of esculetin. Phytochemistry 6:1363–1373

    CAS  Google Scholar 

  • Schoendorf A, Rithner CD, Williams RM, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98:1501–1506

    PubMed  CAS  Google Scholar 

  • Schopfer CR, Ebel J (1998) Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L) using differential display of mRNA. Mol Gen Genet 258:315–322

    PubMed  CAS  Google Scholar 

  • Schuler MA, Berenbaum MR (2003) Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: Specificity and substrate encounter rate. Proc Natl Acad Sci USA 100:14593–14598

    PubMed  Google Scholar 

  • Scio E, Ribeiro A, Alves TMA, Romanha A, De Sousa Filho JD, Cordell G, Zani CL (2003) Diterpenes from Alomia myriadenia (Asteraceae) with cytotoxic and trypanocidal activity. Phytochemistry 64:1125–1131

    PubMed  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    PubMed  CAS  Google Scholar 

  • Sharan M, Taguchi G, Gonda K, Jouke T, Shimosaka M, Hayashida N, Okazaki M (1998) Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. Plant Sci 132:13–19

    CAS  Google Scholar 

  • Sharma SK, Garrett JM, Brown SA (1979) Separation of the S-adenosylmethionine:5- and 8-hydroxyfuanocoumarin O-methyltransferases of Ruta graveolens L. by general ligand affinity chromatography. Z Naturforsch 34:387–391

    Google Scholar 

  • Silva WPK, Deraniyagala SA, Wijesundera RLC, Karunanayake EH, Priyanka UMS (2002) Isolation of scopoletin from leaves of Hevea brasiliensis and the effect of scopoletin on pathogens of H brasiliensis. Mycopathologia 153:199–202

    PubMed  CAS  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I (1995) Salicylic-Acid in Rice—Biosynthesis, Conjugation, and Possible Role. Plant Physiol 108:633–639

    PubMed  CAS  Google Scholar 

  • Stanjek V, Boland W (1998) Biosynthesis of angular furanocoumarins: mechanism and stereochemistry of the oxydative dealkylation of columbianetine to angelicin in Heracleum mantegazzianum (Apiaceae). Helvetica Chimica Acta 81:1596–1607

    CAS  Google Scholar 

  • Stanjek V, Miksch M, Lueer P, Matern U, Boland W (1999a) Biosynthesis of psoralen: Mechanism of a cytochrome p450 catalyzed oxidative bond cleavage. Angewandte Chemie-International Edition 38:400–402

    CAS  Google Scholar 

  • Stanjek V, Piel J, Boland W (1999b) Synthesis of furanocoumarins: mevalonate-independent prenylation of umbelliferone in Apium graveolens (Apiaceae). Phytochemistry 50:1141–1145

    CAS  Google Scholar 

  • Stanley WL, Vannier SH (1967) Psoralens and substituted coumarins from expressed oil of lime. Phytochemistry 6:585–596

    CAS  Google Scholar 

  • Taguchi G, Fujikawa S, Yazawa T, Kodaira R, Hayashida N, Shimosaka M, Okazaki M (2000) Scopoletin uptake from culture medium and accumulation in the vacuoles after conversion to scopolin in 2,4-D-treated tobacco cells. Plant Sci 151:153–161

    PubMed  CAS  Google Scholar 

  • Teutsch HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier JM, Jeltsch JM, Durst F, Werckreichhart D (1993) Isolation and Sequence of a Cdna-Encoding the Jerusalem-Artichoke Cinnamate 4-Hydroxylase, a Major Plant Cytochrome-P450 Involved in the General Phenylpropanoid Pathway. Proc Natl Acad Sci USA 90:4102–4106

    PubMed  CAS  Google Scholar 

  • Tosun A, Ozkal N, Baba M, Okuyama T (2005) Pyranocoumarins from Seseli gummiferum subsp corymbosum growing in Turkey. Turk J Chem 29:327–334

    CAS  Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554

    PubMed  CAS  Google Scholar 

  • Wamer WG, Timmer WC, Wei RR, Miller SA, Kornhauser A (1995) Furocoumarin-Photosensitized Hydroxylation of Guanosine in Rna and DNA. Photochem Photobiol 61:336–340

    PubMed  CAS  Google Scholar 

  • Wen YH, Sahi J, Urda E, Kulkarni S, Rose K, Zheng XX, Sinclair JF, Cai HB, Strom SC, Kostrubsky VE (2002) Effects of bergamottin on human and monkey drug-metabolizing enzymes in primary cultured hepatocytes. Drug Metab Dispos 30:977–984

    PubMed  CAS  Google Scholar 

  • Wen Z, Berenbaum MR, Schuler MA (2003) Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochem Mol Biol 33:937–947

    PubMed  CAS  Google Scholar 

  • Wendorff H, Matern U (1986) Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi Microsomal conversion of (+)marmesin into psoralen. Eur J Biochem 161:391–398

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    PubMed  CAS  Google Scholar 

  • Wulff H, Rauer H, During T, Hanselmann C, Ruff K, Wrisch A, Grissmer S, Hansel W (1998) Alkoxypsoralens, novel nonpeptide blockers of shaker-type K+ channels: Synthesis and photoreactivity. J Med Chem 41:4542–4549

    PubMed  CAS  Google Scholar 

  • Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of Salicylic-Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiol 103:315–321

    PubMed  CAS  Google Scholar 

  • Yang EB, Zhao YN, Zhang K, Mack P (1999) Daphnetin, one of coumarin derivatives, is a protein kinase inhibitor. Biochem Biophys Res Commun 260:682–685

    PubMed  CAS  Google Scholar 

  • Zeringue HJ Jr (1984) The accumulation of five fluorescent compounds in the cotton leaf induced by cell-free extracts of Aspergillus flavus. Phytochemistry 23:2501–2504

    Google Scholar 

  • Zgórka G, Dragan T, Glowniak K, Basiura E (1998) Determination of furanochromones and pyranocoumarins in drugs and Ammi visnaga fruits by combined solid-phase extraction—high-performance liquid chromatography and thin-layer chromatography—high-performance liquid chromatography. J Chromatogr A 797:305–309

    Google Scholar 

  • Zobel AM, Brown SA (1988) Determination of furanocoumarins on the leaf surface of Ruta graveolens L. with an improved extraction technique. J Nat Prod 51:941–946

    CAS  Google Scholar 

  • Zumwalt JG, Neal JJ (1993) Cytochromes P450 from Papilio polyxenes: adaptations to host plant allelochemicals. Comp Biochem Physiol 106C:111–118

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bourgaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgaud, F., Hehn, A., Larbat, R. et al. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5, 293–308 (2006). https://doi.org/10.1007/s11101-006-9040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9040-2

Keywords

Navigation