Photosynthetica 2018, 56(3):901-910 | DOI: 10.1007/s11099-017-0747-7

Growth and photosynthetic response of two larches exposed to O3 mixing ratios ranging from preindustrial to near future

T. Sugai1, D. G. Kam1, E. Agathokleous1,2,*, M. Watanabe1,3, K. Kita4, T. Koike1,*
1 Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido, Japan
2 Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo, Hokkaido, Japan
3 Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
4 Forestry Research Institute, Hokkaido Research Organization (HRO), Bibai, Hokkaido, Japan

In this study, we questioned whether ground-level ozone (O3) induces hormesis in Japanese larch (Larix kaempferi) and its hybrid F1 (L. gmelinii var. japonica × L. kaempferi). In order to answer the question, we exposed seedlings of both taxa to four O3 treatments [ranging from ≈10 to 60 nmol(O3) mol-1] in open-top chambers for two consecutive growing seasons. We found a hormetic response in maximum photosynthetic rate (PNmax) at 1700 μmol(CO2) mol-1 and maximum rates of carboxylation (Vcmax) and electron transport (Jmax) in both larches. Stimulation of PNmax, Vcmax, and Jmax did not lead to suppressed plant productivity in Japanese larch, which followed a stress-tolerant strategy, but it did lead to suppressed plant productivity in hybrid larch which followed a competitive strategy. These findings are the first to suggest that stimulation of physiological functions by low O3 exposures may have negative consequences for larch reproduction.

Additional key words: biphasic; competition; dose-response; homeostasis; hormesis; plasticity

Received: March 14, 2017; Accepted: May 15, 2017; Prepublished online: September 1, 2018; Published: August 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sugai, T., Kam, D.G., Agathokleous, E., Watanabe, M., Kita, K., & Koike, T. (2018). Growth and photosynthetic response of two larches exposed to O3 mixing ratios ranging from preindustrial to near future. Photosynthetica56(3), 901-910. doi: 10.1007/s11099-017-0747-7
Download citation

References

  1. Agathokleous E.: Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O3 phytotoxicity. - Ecotox. Environ. Safe. 142: 530-537, 2017. Go to original source...
  2. Agathokleous E., Saitanis C.J., Wang X. et al.: A review study on past 40 years of research on effects of tropospheric O3 on belowground structure, functioning, and processes of trees: a linkage with potential ecological implications. - Water Air Soil Poll. 227: 1-28, 2016a. Go to original source...
  3. Agathokleous E., Saitanis C.J., Stamatelopoulos D. et al.: Olive oil for dressing plant leaves so as to avoid O3 injury. - Water Air Soil Poll. 227: 282, 2016b. Go to original source...
  4. Agathokleous E., Watanabe M., Eguchi N. et al.: Root production of Fagus crenata blume saplings grown in two soils and exposed to elevated CO2 concentration: an 11-year freeair-CO2 enrichment (FACE) experiment in northern Japan. - Water Air Soil Poll. 227: 187, 2016c. Go to original source...
  5. Agathokleous E., Vanderstock A., Kita K. et al.: Stem and crown growth of Japanese larch and its hybrid F1 grown in two soils and exposed to two free-air O3 regimes. - Environ. Sci. Pollut. R. 24: 6634-6647, 2017. Go to original source...
  6. Ainsworth E.A., Yendrek C.R., Sitch S. et al.: The effects of tropospheric ozone on net primary productivity and implications for climate change. - Annu. Rev. Plant Biol. 63: 637-661, 2012. Go to original source...
  7. Ainsworth E.A., Long S.P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. - New Phytol. 165: 351-372, 2005. Go to original source...
  8. Akimoto H., Mori Y., Sasaki K. et al.: Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990-2010: causes of temporal and spatial variation. - Atmos. Environ. 102: 302-310, 2015. Go to original source...
  9. Box G.E.P., Cox D.R.: An analysis of transformations. - J. Roy. Stat. Soc. B-Met 26: 211-252, 1964. Go to original source...
  10. Calabrese E.J.: Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features. - Environ. Pollut. 182: 452-460, 2013. Go to original source...
  11. Calabrese E.J.: Hormesis: a fundamental concept in biology. - Microb. Cell 1: 145-149, 2014. Go to original source...
  12. Calabrese E.J.: Hormesis: principles and applications. - Homeopathy 104: 69-82, 2015. Go to original source...
  13. Calatayud V., Marco F., Cerveró J. et al.: Contrasting ozone sensitivity in related evergreen and deciduous shrubs. - Environ. Pollut. 158: 3580-3587, 2010. Go to original source...
  14. Cedergreen N., Streibig J.C., Kudsk P. et al.: The occurrence of hormesis in plants and algae. - Dose-Response 5: 150-162, 2007. Go to original source...
  15. Chatani S., Amann M., Goel A. et al.: Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030. - Atmos. Chem. Phys. 14: 9259-9277, 2014. Go to original source...
  16. Eamus D., Barnes J.D., Mortensen L. et al.: Persistent stimulation of CO2 assimilation and stomatal conductance by summer ozone fumigation in Norway spruce. - Environ. Pollut. 63: 365-379, 1990. Go to original source...
  17. Farquhar G.V., von Caemmerer S.V., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  18. Feng Z., Hu E., Wang X. et al.: Ground-level O3 pollution and its impacts on food crops in China: a review. - Environ. Pollut. 199: 42-48, 2015. Go to original source...
  19. Flowers M.D., Fiscus E.L., Burkey K.O. et al.: Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. - Environ. Exp. Bot. 61: 190-198, 2007. Go to original source...
  20. Fuhrer D., Skärby L., Ashmore M.R.R.: Critical levels for ozone effects on vegetation in Europe. - Environ. Pollut. 97: 91-106, 1997. Go to original source...
  21. Gower S.T., Richards J.H.: Larches: deciduous conifers in an evergreen world. - BioScience 40: 818-826, 1990. Go to original source...
  22. Grantz D.A., Gunn S., Vu H.B.: O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. - Plant Cell Environ. 29: 1193-1209, 2006. Go to original source...
  23. Grime J.P.: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. - Am. Nat. 111: 1169-1194, 1977. Go to original source...
  24. Gyu K.D., Shi C., Watanabe M. et al.: Growth of Japanese and hybrid larch seedlings grown under free-air O3 fumigation - an initial assessment of the effects of adequate and excessive nitrogen. - J. Agr. Meteorol. 71: 239-244, 2015. Go to original source...
  25. Hartmann D.L., Klein Tank A.M.G., Rusticucci M., et al.: Observations: atmosphere and surface. - In: Stocker T.F., Qin D., Plattner G.-K. et al. (ed.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York 2013.
  26. Hoffmann W.A., Poorter H.: Avoiding bias in calculations of relative growth rate. - Ann. Bot.-London 90: 37-42, 2002. Go to original source...
  27. Hopkins W.G.: A new view of statistics. - Internet Society for Sport Science. Available at http://newstats.org, 2000.
  28. Hoshika Y., Watanabe M., Inada N. et al.: Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata). - Ann. Bot.-London 112: 1149-1158, 2013. Go to original source...
  29. IGBP: The terrestrial carbon cycle: Implication for the Kyoto Protocol. - Science 280: 1393-1394, 1998. Go to original source...
  30. Kalabokas P.D., Thouret V., Cammas J.-P. et al.: The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case). - Tellus B 67: 27853, 2015. Go to original source...
  31. Kita K., Fujimoto T., Uchiyama K. et al.: Estimated amount of carbon accumulation of hybrid larch in three 31-year-old progeny test plantations. - J. Wood Sci. 55: 425-434, 2009. Go to original source...
  32. Kitao M., Yasuda Y., Kominami Y. et al.: Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3. - Sci. Rep. 6: 32549, 2016. Go to original source...
  33. Koike T., Mao Q., Inada N. et al.: Growth and photosynthetic responses of cuttings of a hybrid larch (Larix gmelinii var. japonica x L., kaempferi) to elevated ozone and/or carbon dioxide. - Asian J., Atmos. Environ. 6: 104-110, 2012. Go to original source...
  34. Koike T., Watanabe M., Hoshika Y. et al.: Effects of ozone on forest ecosystems in East and Southeast Asia. - In: Matyssek R., Clarke N., Cudlin P., et al. (ed.): Climate Change, Air Pollution and Global Challenges: Understanding and Solutions from Forest Research, A COST Action. Pp. 371-390. Elsevier, Oxford 2013. Go to original source...
  35. Küppers M.: Ecological significance of above-ground architectural patterns in woody plants: A question of costbenefit relationships. - Trends Ecol. Evol. 4: 375-379, 1989. Go to original source...
  36. Kurinobu S.: Forest tree breeding for Japanese larch. - Eurasian J., For. Res. 8: 127-134, 2005.
  37. Liancourt P., Callaway R.M., Michalet R.: Stress tolerance and competitive-response ability determine the outcome of biotic interactions. - Ecology 86: 1611-1618, 2005. Go to original source...
  38. Long S.P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. - J. Exp. Bot. 54: 2393-2401, 2003. Go to original source...
  39. Manninen S., Huttunen S., Vanhatalo M. et al.: Inter-and intraspecific responses to elevated ozone and chamber climate in northern birches. - Environ. Pollut. 157: 1679-1688, 2009. Go to original source...
  40. Matyssek R., Bytnerowicz A., Karlsson P.E. et al.: Promoting the ozone flux concept for European forest trees. - Environ. Pollut. 146: 587-607, 2007. Go to original source...
  41. Matyssek R., Schulze E.-D.: Heterosis in hybrid larch (Larix decidua x L., leptolepis). - Trees 1: 225-231, 1987. Go to original source...
  42. Osawa A., Zyryanova O.A., Matsuura Y. et al. (ed.): Permafrost Ecosystems: Siberian Larch Forests. - Ecological Studies 209. Pp. 502. Springer, Dordrecht 2010. Go to original source...
  43. Paoletti E.: Impact of ozone on Mediterranean forests: A review. - Environ. Pollut. 144: 463-474, 2006. Go to original source...
  44. Paoletti E., Manning W.J.: Toward a biologically significant and usable standard for ozone that will also protect plants. - Environ. Pollut. 150: 85-95, 2007. Go to original source...
  45. Paoletti E., Ranieri A., Lauteri M.: Moving toward effective ozone flux assessment. - Environ. Pollut. 156: 16-19, 2008. Go to original source...
  46. Pell E.J., Temple P.J., Friend A.L. et al.: Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments. - J. Environ. Qual. 23: 429-436, 1994. Go to original source...
  47. Qu L.: Ecophysiological study on the natural regeneration of the two larch species with special references to soil environment in larch forests. - Eurasian J., For. Res. 19: 1-51, 2016.
  48. Ryu K., Watanabe M., Shibata H. et al.: Ecophysiological responses of the larch species in northern Japan to environmental changes as a basis for afforestation. - Landsc. Ecol. Eng. 5: 99-106, 2009. Go to original source...
  49. Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to ImageJ: 25 years of image analysis. - Nat. Methods 9: 671-675, 2012. Go to original source...
  50. İesták Z., (ed.): Photosynthesis during Leaf Development. Pp. 396. Springer, Dordrecht, Boston 1985.
  51. Shinano T., Lei T.T., Kawamukai T. et al.: Dimethylsulfoxide method for the extraction of chlorophylls a and b from the leaves of wheat, field bean, dwarf bamboo, and oak. - Photosynthetica 32: 409-415, 1996.
  52. Sicard P., Serra R., Rossello P.: Spatiotemporal trends in groundlevel ozone concentrations and metrics in France over the time period 1999-2012. - Environ. Res. 149: 122-144, 2016. Go to original source...
  53. Vázquez-Ybarra J.A., Peña-Valdivia C.B., Trejo C. et al.: Promoting growth of lettuce plants (Lactuca sativa L.) with sublethal ozone doses applied to culture medium. - Rev. Fitotec. Mex. 38: 405-413, 2015. Go to original source...
  54. Verstraeten W.W., Neu J.L., Williams J.E. et al.: Rapid increases in tropospheric ozone production and export from China. - Nature Geosci. 8: 690-695, 2015. Go to original source...
  55. Whitehead F.H., Myerscough P.J.: Growth analysis of plants. The ratio of mean relative growth rate to mean relative rate of leaf area increase. - New Phytol. 61: 314-321, 1962. Go to original source...
  56. Yamaguchi M., Watanabe M., Matsumura H. et al.: Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. - Asian J., Atmos. Environ. 5: 65-78, 2011. Go to original source...
  57. Yendrek C.R., Leisner C.P., Ainsworth E.A.: Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris. - Glob. Change Biol. 19: 3155-3166, 2013. Go to original source...