Skip to main content

Advertisement

Log in

Nano-Engineered Erythrocyte Ghosts as Inhalational Carriers for Delivery of Fasudil: Preparation and Characterization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nanoerythrosomes (NERs), an engineered derivative of erythrocytes, have long been used as drug delivery carriers. These cell based carriers are biocompatible and biodegradable, and they exhibit efficient drug loading, targeting specificity and prolonged biological half-life. In this study, we have evaluated the feasibility of NERs as inhalable carriers for delivery of fasudil, an investigational drug for the treatment of pulmonary arterial hypertension.

Methods

We prepared NERs by hypotonic lysis of erythrocytes derived from rat blood followed by extrusion through polycarbonate membranes. The formulations were optimized and characterized for size, morphology, entrapment efficiency, stability, cellular uptake and in-vitro release profiles followed by monitoring of drug absorption and safety evaluation after intratracheal administration of fasudil-loaded NERs into rats.

Results

NERs were spherical in shape with an average size of 154.1 ± 1.31 nm and the drug loading efficiency was 48.76 ± 2.18%. Formulations were stable when stored at 4°C for 3 weeks. When incubated with rat pulmonary arterial smooth muscle cells (PASM), a significant amount of NERs was taken up by PASM cells. The drug encapsulated in NERs inhibited the rho-kinase activity upto 50%, which was comparable with the plain fasudil. A ~6–8 fold increase in the half-life of fasudil was observed when encapsulated in NERs.

Conclusion

This study suggests that nanoerythrosomes can be used as cell derived carriers for inhalational delivery of fasudil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BALF:

Bronchoalveolar lavage fluid

EGM:

Endothelial growth medium

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

HBSS:

Hanks balanced salt solution

HRP:

Horseradish peroxidase

IV:

Intravenous

IT:

Intratracheal

LDH:

Lactate dehydrogenase

LPA:

Lysophosphatidic acid

NERs:

Nanoerythrosomes

PAE:

Pulmonary arterial endothelial

PAH:

Pulmonary arterial hypertension

PASMC:

Pulmonary arterial smooth muscle cells

PBS:

Phosphate buffered saline

ROCK:

Rho-kinase

rMYPT-1:

Recombinant myosin phosphatase target subunit-1

SD:

Sprague Dawley

TMB:

Tetramethylbenzidine

References

  1. Holgado MA, Martin-Banderas L, Alvarez-Fuentes J, Fernandez-Arevalo M, Arias JL. Drug targeting to cancer by nanoparticles surface functionalized with special biomolecules. Curr Med Chem. 2012;19:3188–95.

    Article  CAS  PubMed  Google Scholar 

  2. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  3. Gutierrez Millan C, Colino Gandarillas CI, Sayalero Marinero ML, Lanao JM. Cell-based drug-delivery platforms. Ther Deliv. 2012;3:25–41.

    Article  CAS  PubMed  Google Scholar 

  4. Yoo JW, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10:521–35.

    Article  CAS  PubMed  Google Scholar 

  5. Patel PD, Dand N, Hirlekar RS, Kadam VJ. Drug loaded erythrocytes: as novel drug delivery system. Curr Pharm Des. 2008;14:63–70.

    Article  CAS  PubMed  Google Scholar 

  6. Magnani M, Pierige F, Rossi L. Erythrocytes as a novel delivery vehicle for biologics: from enzymes to nucleic acid-based therapeutics. Ther Deliv. 2012;3:405–14.

    Article  CAS  PubMed  Google Scholar 

  7. Pouliot R, Saint-Laurent A, Chypre C, Audet R, Vitte-Mony I, Gaudreault RC, et al. Spectroscopic characterization of nanoErythrosomes in the absence and presence of conjugated polyethyleneglycols: an FTIR and (31)P-NMR study. Biochim Biophys Acta. 2002;1564:317–24.

    Article  CAS  PubMed  Google Scholar 

  8. Bodemann H, Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol. 1972;8:1–26.

    Article  CAS  PubMed  Google Scholar 

  9. Kwant WO, Seeman P. The erythrocyte ghost is a perfect osmometer. J Gen Physiol. 1970;55:208–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Schwoch G, Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973;2:197–218.

    Article  CAS  PubMed  Google Scholar 

  11. Lieber MR, Steck TL. Hemolytic holes in human erythrocyte membrane ghosts. Methods Enzymol. 1989;173:356–67.

    Article  CAS  PubMed  Google Scholar 

  12. Hu CM, Fang RH, Zhang L. Erythrocyte-inspired delivery systems. Adv Healthc Mater. 2012;1:537–47.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SH, Kim EJ, Hou JH, Kim JM, Choi HG, Shim CK, et al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials. 2009;30:959–67.

    Article  PubMed  Google Scholar 

  14. Mishra PR, Jain NK. Folate conjugated doxorubicin-loaded membrane vesicles for improved cancer therapy. Drug Deliv. 2003;10:277–82.

    Article  CAS  PubMed  Google Scholar 

  15. Agnihotri J, Jain NK. Biodegradable long circulating cellular carrier for antimalarial drug pyrimethamine. Artif Cells Nanomed Biotechnol. 2013.

  16. Lejeune A, Moorjani M, Gicquaud C, Lacroix J, Poyet P, Gaudreault R. Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res. 1994;14:915–9.

    CAS  PubMed  Google Scholar 

  17. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011;8:443–55.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta V, Gupta N, Shaik IH, Mehvar R, McMurtry IF, Oka M, et al. Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J Control Release. 2013;167:189–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Doberstein SK, Wiegand G, Machesky LM, Pollard TD. Fluorescent erythrocyte ghosts as standards for quantitative flow cytometry. Cytometry. 1995;20:14–8.

    Article  CAS  PubMed  Google Scholar 

  20. Patel B, Gupta V, Ahsan F. PEG-PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release. 2012;162:310–20.

    Article  CAS  PubMed  Google Scholar 

  21. Cinti C, Taranta M, Naldi I, Grimaldi S. Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds. PloS one. 2011;6:e17132.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zolla L, Lupidi G, Marcheggiani M, Falcioni G, Brunori M. Red blood cells as carriers for delivering of proteins. Ann Ist Super Sanita. 1991;27:97–103.

    CAS  PubMed  Google Scholar 

  23. Sprandel U. Temperature-induced shape transformation of carrier erythrocytes. Res Exp Med (Berl). 1990;190:267–75.

    Article  CAS  PubMed  Google Scholar 

  24. DeLoach JR, Droleskey RE, Andrews K. Encapsulation by hypotonic dialysis in human erythrocytes: a diffusion or endocytosis process. Biotechnol Appl Biochem. 1991;13:72–82.

    CAS  PubMed  Google Scholar 

  25. Patel VP, Fairbanks G. Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol. 1981;88:430–40.

    Article  CAS  PubMed  Google Scholar 

  26. Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151:201–15.

    Article  CAS  PubMed  Google Scholar 

  27. Ishida T, Takanashi Y, Doi H, Yamamoto I, Kiwada H. Encapsulation of an antivasospastic drug, fasudil, into liposomes, and in vitro stability of the fasudil-loaded liposomes. Int J Pharm. 2002;232:59–67.

    Article  CAS  PubMed  Google Scholar 

  28. Johansson A, Lundborg M, Skold CM, Lundahl J, Tornling G, Eklund A, et al. Functional, morphological, and phenotypical differences between rat alveolar and interstitial macrophages. Am J Respir Cell Mol Biol. 1997;16:582–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chono S, Tanino T, Seki T, Morimoto K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol. 2007;59:75–80.

    Article  CAS  PubMed  Google Scholar 

  30. Kolozsvari B, Bako E, Becsi B, Kiss A, Czikora A, Toth A, et al. Calcineurin regulates endothelial barrier function by interaction with and dephosphorylation of myosin phosphatase. Cardiovasc Res. 2012;96:494–503.

    Article  CAS  PubMed  Google Scholar 

  31. van Nieuw Amerongen GP, Vermeer MA, van Hinsbergh VW. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler, Thromb, Vasc Biol. 2000;20:E127–33.

    Article  Google Scholar 

  32. Sanagi MM, Ling SL, Nasir Z, Hermawan D, Ibrahim WA, Abu NA. Comparison of signal-to-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography. J AOAC Int. 2009;92:1833–8.

    CAS  PubMed  Google Scholar 

  33. Duncan JE, Hatch GM, Belik J. Susceptibility of exogenous surfactant to phospholipase A2 degradation. Can J Physiol Pharmacol. 1996;74:957–63.

    CAS  PubMed  Google Scholar 

  34. Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation. 2002;105:1545–7.

    Article  CAS  PubMed  Google Scholar 

  35. Bhargava M, Wendt CH. Biomarkers in acute lung injury. Transl Res. 2012;159:205–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosures

The authors acknowledge Drs. Eva Nozik-Grayck and Kurt Stenmark at the University of Colorado, Denver for providing PASM and PAE cell lines. This work was supported in part by an American Recovery and Reinvestment Act Fund, NIH 1R15HL103431 to Dr. Fakhrul Ahsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrul Ahsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Patel, B. & Ahsan, F. Nano-Engineered Erythrocyte Ghosts as Inhalational Carriers for Delivery of Fasudil: Preparation and Characterization. Pharm Res 31, 1553–1565 (2014). https://doi.org/10.1007/s11095-013-1261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1261-7

KEY WORDS

Navigation