Skip to main content

Advertisement

Log in

Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The development of particle-based carriers for transepidermal drug delivery has become a field of major interest in dermatology. In this study, we investigated the suitability of biodegradable poly-lactic acid (PLA) particles loaded with fluorescent dyes as carriers for transepidermal drug delivery.

Methods

The penetration profiles of PLA particles (228 and 365 nm) and the release of dye from the particles were investigated in human skin explants using fluorescence microscopy, confocal laser scanning microscopy and flow cytometry.

Results

PLA particles penetrated into 50% of the vellus hair follicles, reaching a maximal depth corresponding to the entry of the sebaceous gland in 12–15% of all observed follicles. The accumulation of particles in the follicular ducts was accompanied by the release of dye to the viable epidermis and its retention in the sebaceous glands for up to 24 h. Kinetic studies in vitro as well as in skin explants revealed, that, although stable in aqueous solution, destabilization of the particles and significant release of incorporated dye occurred upon contact with organic solvents and the skin surface.

Conclusions

These results suggest that particles based on PLA polymers may be ideal carriers for hair follicle and sebaceous gland targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Coum-6:

coumarin-6

Coum-6_PLA_365:

coumarin-6-loaded 365 nm PLA particles

CSSS:

cyanoacrylate skin surface stripping

IPM:

isopropylmiristate

MFI:

mean fluorescence intensity

NPs:

nanoparticles

NR:

nile red

NR_PLA_228:

nile red-loaded 228 nm PLA particles

PCL:

poly- ε-caprolactone

PLA:

poly lactic-acid

PLGA:

poly-lactic-co-glycolic acid

SLN:

solid lipid nanoparticles

VHF:

vellus hair follicle

References

  1. Li L, Lishko V, Hoffman RM. Liposome targeting of high molecular weight DNA to the hair follicles of histocultured skin: a model for gene therapy of the hair growth processes. In Vitro Cell Dev Biol Anim. 1993;29:258–260.

    Article  Google Scholar 

  2. Bernard E, Dubois JL, Wepierre J. Importance of sebaceous glands in cutaneous penetration of an antiandrogen: target effect of liposomes. J Pharm Sci. 1997;86:573–578.

    Article  PubMed  CAS  Google Scholar 

  3. Li L, Hoffman RM. Topical liposome delivery of molecules to hair follicles in mice. J Dermatol Sci. 1997;14:101–108.

    Article  PubMed  Google Scholar 

  4. Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Controll Release. 2004;99:53–62.

    Article  Google Scholar 

  5. Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. Follicular targeting-A promising tool in selective dermatotherapy. J Invest Dermatol Symp Proc. 2005;10:252–255.

    Article  Google Scholar 

  6. Rolland A, Wagner N, Chatelus A, Shroot B, Schaefer H. Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm Res. 1993;10:1738–44.

    Article  PubMed  CAS  Google Scholar 

  7. Lauer AC, Ramachandran C, Lieb LM, Niemiec S, Weiner ND. Targeted delivery to the pilosebaceous unit via liposomes. Adv Drug Deliv Rev. 1996;18:311–324.

    Article  CAS  Google Scholar 

  8. Mordon S, Sumian Ch, Devoisselle JM. Site-specific methylene blue delivery to pilosebaceous structures using highly porous nylon microspheres an experimental evaluation. Lasers Surg Med. 2004;33:119–125.

    Article  Google Scholar 

  9. Lademann J, Knorr F, Richter H, Blume-Peytavi U, Vogt A, Antoniou C, et al. Hair follicles: an efficient storage and penetration pathway for topically applied substances. Skin Pharmacol Physiol. 2008;21:150–155.

    Article  PubMed  CAS  Google Scholar 

  10. Michel M, L’Heureux L, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim. 1999;35:318–326.

    Article  PubMed  CAS  Google Scholar 

  11. Teichmann A, Otberg N, Jacobi U, Sterry W, Lademann J. Follicular penetration: development of a method to block the follicles selectively against the penetration of topically applied substances. Skin Pharmacol Physiol. 2006;19:216–223.

    Article  PubMed  CAS  Google Scholar 

  12. Vogt A, Blume-Peytavi U. Die Biologie des menschlichen Haarfollikels. Hautarzt. 2003;54:692–698.

    Article  PubMed  CAS  Google Scholar 

  13. Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 2004;123:168–176.

    Article  PubMed  CAS  Google Scholar 

  14. Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 40 nm, but not 750 or 1, 500 nm, Nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126:1316–1322.

    Article  PubMed  CAS  Google Scholar 

  15. Lademann J, Richter H, Schaefer H, Blume-Peytavi U, Teichmann A, Otberg N, et al. Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 2006;19:232–236.

    Article  PubMed  CAS  Google Scholar 

  16. Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59:427–443.

    Article  PubMed  Google Scholar 

  17. Warheit DB, Borm PJ, Hennes C, Lademann J. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol. 2007;19:631–643.

    Article  PubMed  CAS  Google Scholar 

  18. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol. 2007;20:148–154.

    Article  PubMed  CAS  Google Scholar 

  19. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–1712.

    PubMed  CAS  Google Scholar 

  20. Zhang LW, Monteiro-Riviere NA. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 2008;21:166–180.

    Article  PubMed  Google Scholar 

  21. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 2007;7:155–160.

    Article  PubMed  CAS  Google Scholar 

  22. Ryman-Rasmussen J, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. 2007;127:143–153.

    Article  PubMed  CAS  Google Scholar 

  23. Maurus PB, Kaeding ChC. Bioabsorbable implant material review. Oper Tech in Sport Med. 2004;12:158–160.

    Article  Google Scholar 

  24. Burgess CM, Quiroga RM. Assessment of the safety and efficacy of poly-L-lactic acid for the treatment of HIV-associated facial lipoatrophy. J Am Acad Dermatol. 2005;52:233–239.

    Article  PubMed  Google Scholar 

  25. Beer KR, Rendon MI. Use of Sculptra™ in esthetic rejuvenation. Semin Cutan Med Surg. 2006;25:127–131.

    Article  PubMed  CAS  Google Scholar 

  26. Mohamed F, Van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci. 2008;97:71–87.

    Article  PubMed  CAS  Google Scholar 

  27. Lamalle-Bernard D, Munier S, Compagnon C, Charles MH, Kalyanaraman KS, Delair T, et al. Co-adsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic PLA nanoparticles preserves antigenicity and immunogenicity. J Control Release. 2006;115:57–67.

    Article  PubMed  CAS  Google Scholar 

  28. Peiser M, Grutzkau A, Wanner R, Kolde G. CD1a and CD1c cell sorting yields a homogenous population of immature human Langerhans cells. J Immunol Methods. 2003;279:41–53.

    Article  PubMed  CAS  Google Scholar 

  29. Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21:1818–1825.

    Article  PubMed  Google Scholar 

  30. Vogt A, Hadam S, Heiderhoff M, Audring H, Lademann J, Sterry W, et al. Morphometry of human terminal and vellus hair follicles. Exp Dermatol. 2007;16:946–950.

    Article  PubMed  Google Scholar 

  31. Lademann J, Otberg N, Richter H, Weigmann H-J, Lindemann U, Schaefer H, et al. Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol. 2001;14:17–22.

    PubMed  Google Scholar 

  32. Patzelt A, Richter H, Buettemeyer R, Roewert Huber HJ, Blume-Peytavi U, Sterry W, et al. Differential stripping demonstrate a significant reduction of the hair follicle reservoir in vitro compared to in vivo. Eur J Pharm Biopharm. 2008;70:234–238.

    Article  PubMed  CAS  Google Scholar 

  33. Starcher B, Aycock RL, Hill CH. Multiple roles for elastic fibers in the skin. J Histochem Cytochem. 2005;53:431–443.

    Article  PubMed  CAS  Google Scholar 

  34. Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Förster resonance energy transfer imaging. Langmuir. 2008;24:5213–5217.

    Article  PubMed  CAS  Google Scholar 

  35. Matsumoto A, Matsukawa Y, Suzuki T, Yoshino H. Drug release characteristic of multi-reservoir type microspheres, with poly(dl-lactide-co-glycolide) and poly(dl-lactide). J Control Rel. 2005;106:172–180.

    Article  CAS  Google Scholar 

  36. Liu SQ, Yang YY, Liu XM, Tong YW. Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-b-poly(D, L-lactide) microspheres for protein delivery. Biomacromolecules. 2003;4:1784–1793.

    Article  PubMed  CAS  Google Scholar 

  37. Lassalle V, Ferreira ML. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci. 2007;7:767–783.

    Article  PubMed  CAS  Google Scholar 

  38. Sawicki JA, Anderson DG, Langer R. Nanoparticle delivery of suicide DNA for epithelial ovarian cancer therapy. Adv Exp Med Biol. 2008;622:209–219.

    Article  PubMed  Google Scholar 

  39. Sanvicens N, Marco MP. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends in Biotechnol. 2008;26:425–33.

    Article  CAS  Google Scholar 

  40. Vogt A, Mahé B, Costagliola D, Bonduelle O, Hadam S, Schaefer G, et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol. 2008;180:1482–1489.

    PubMed  CAS  Google Scholar 

  41. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Del Rev. 2004;56:581–587.

    Article  CAS  Google Scholar 

  42. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Del Rev. 2007;59:478–490.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by European funding to B. Verrier through the FP6 STREP Munanovac programme. C. Primard was supported by a fellowship from the Region Rhone-Alpes (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Vogt.

Additional information

Fiorenza Rancan and Dimitrios Papakosta have contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

Cryosections of human skin after topical application of NR_PLA_228 (a-c), Coum-6_PLA_365 (d-f) and 200 nm polystyrene (PS, g-i,) particles and 16 h incubation at 37°C. Images c,f and i show the 4 time magnified image of the marked region in the corresponding sample. Most PLA particles aggregate on the follicle openings while the fluorescent dye diffused into the epidermis. On the contrary, PS particles accumulated in the follicle duct without leaking of the loaded fluorescent dye. (PPT 4160 kb)

Fig S2

NR_PLA_228 (a), Coum-6_PLA_365 (b) and polystyrene particles (c,d, Fluospheres, 200 nm) suspended in PBS were incubated 24 h with IPM. Aliquots were then collected at the PBS/IPM interface and observed with a fluorescence microscope. PLA particles form clusters at the water/IPM interface (a,b) while no clusters of PS particles were visible at the interfaces between the two phases. PS particles, in contrast, remained in dispersion in the aqueous buffer phase (c,d). (PPT 755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rancan, F., Papakostas, D., Hadam, S. et al. Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy. Pharm Res 26, 2027–2036 (2009). https://doi.org/10.1007/s11095-009-9919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9919-x

Key words

Navigation