Skip to main content
Log in

Transport of Poly(Amidoamine) Dendrimers across Caco-2 Cell Monolayers: Influence of Size, Charge and Fluorescent Labeling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the transport of poly(amidoamine) (PAMAM) dendrimers with positive, neutral and negatively charged surface groups across Caco-2 cell monolayers.

Methods

Cationic PAMAM-NH2 (G2 and G4), neutral PAMAM-OH (G2), and anionic PAMAM-COOH (G1.5–G3.5) dendrimers were conjugated to fluorescein isothiocyanate (FITC). The permeability of fluorescently labeled PAMAM dendrimers was measured in the apical-to-basolateral direction. 14C-Mannitol permeability was measured in the presence of unlabeled and FITC labeled PAMAM dendrimers. Caco-2 cells were incubated with the dendrimers followed by mouse anti-occludin or rhodamine phalloidin, and visualized using confocal laser scanning microscopy to examine tight junction integrity.

Results

The overall rank order of PAMAM permeability was G3.5COOH > G2NH2 > G2.5COOH > G1.5COOH > G2OH. 14C-Mannitol permeability significantly increased in the presence of cationic and anionic PAMAM dendrimers with significantly greater permeability in the presence of labeled dendrimers compared to unlabeled. PAMAM dendrimers had a significant influence on tight junction proteins occludin and actin, which was microscopically evidenced by disruption in the occludin and rhodamine phalloidin staining patterns.

Conclusions

These studies demonstrate that enhanced PAMAM permeability is in part due to opening of tight junctions, and that by appropriate engineering of PAMAM surface chemistry it is possible to increase polymer transepithelial transport for oral drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FITC:

Fluorescein isothiocyanate

G:

Generation

HBSS:

Hank’s balanced salt solution

PAMAM:

Poly(amidoamine)

TEER:

Transepithelial electrical resistance

References

  1. N. Pantzar, L. Lundin, L. Wester, and B. R. Westrom. Bidirectional small-intestinal permeability in the rat to some common marker molecules. Scand. J. Gastroenterol. 29:703–709 (1991).

    Google Scholar 

  2. D. A. Tomalia, A. M. Naylor, and W. A. Goddard III. Starburst dendrimers. Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 29:138–175 (1990).

    Article  Google Scholar 

  3. T. Kuhl, Y. Guo, J. L. Alderfer, A. D. Berman, D. Leckband, J. Israelachvili, and S. W. Hui. Direct measurement of polyethlyene glycol induced depletion attraction between lipid bilayers. Langmuir 12:3003–3014 (1996).

    Article  CAS  Google Scholar 

  4. R. Jevprasesphant, J. Penny, D. Attwood, and A. D’Emanuele. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J. Control Release 97:259–267 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. R. Wiwattanapatapee, B. Carreno-Gomez, N. Malik, and R. Duncan. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17:991–998 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. F. Tajarobi, M. El-Sayed, B. D. Rege, J. E. Polli, and H. Ghandehari. Transport of poly amidoamine dendrimers across Madin–Darby Canine Kidney cells. Int. J. Pharm. 215:263–267 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. M. El-Sayed, M. Ginski, C. Rhodes, and H. Ghandehari. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control Release 81:355–365 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. M. El-Sayed, M. Ginski, C. Rhodes, and H. Ghandehari. Influence of surface chemistry of poly(amidoamine) dendrimers on Caco-2 cell monolayers. J. Bioact. Compat. Polym. 18:7–22 (2003).

    Article  CAS  Google Scholar 

  9. A. D’Emanuele, R. Jevprasesphant, J. Penny, and D. Attwood. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release 95:447–453 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. R. Jevprasesphant, J. Penny, D. Attwood, N. B. McKeown, and A. D’Emanuele. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 20:1543–1550 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N. B. McKeown, and A. D’Emanuele. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252:263–266 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. D. A. Tomalia. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta 37:39–57 (2004).

    CAS  Google Scholar 

  13. R. Esfand, and D. A. Tomalia. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6:427–436 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. El-Sayed, M. F. Kiani, M. D. Naimark, A. H. Hikal, and H. Ghandehari. Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharm. Res. 18:23–28 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove. MDCK (Madin–Darby Canine Kidney) cells: a tool for membrane permeability screening. J. Pharm. Sci. 88:28–33 (1998).

    Article  Google Scholar 

  16. F. A. Dorkoosh, C. A. Broekhuizen, G. Borchard, M. Rafiee-Tehrani, J. C. Verhoef, and H. E. Junginger. Transport of octreotide and evaluation of mechanism of opening the paracellular tight junctions using superporous hydrogel polymers in Caco-2 cell monolayers. J. Pharm. Sci. 93:743–752 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. A. B. J. Noach, Y. Kurosaki, M. C. M. Blom-Roosemalen, A. G. D. Boer, and D. D. Breimer. Cell-polarity dependant effect of chelation on the paracellular permeability of confluent Caco-2 cell monolayers. Int. J. Pharm. 90:229–237 (1993).

    Article  CAS  Google Scholar 

  18. M. El-Sayed, C. A. Rhodes, M. Ginski, and H. Ghandehari. Transport mechanism(s) of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Int. J. Pharm. 265:151–157 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Chen, C. Merzdorf, D. L. Paul, and D. A. Goodenough. COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J. Cell Biol. 138:891–899 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. J. M. Anderson and C. M. van Itallie. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269:G467–G475 (1995).

    PubMed  CAS  Google Scholar 

  21. J. M. Anderson, C. M. Van Itallie, M. D. Peterson, B. R. Stevenson, E. A. Carew, and M. S. Mooseker. ZO-1 mRNA and protein expression during tight junction assembly in Caco-2 cells. J. Cell Biol. 109:1047–1056 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. L. Knutson, F. Knutson, and T. Knutson. Permeability in the gastrointestinal tract. In J. B. D. H. Lennernäs (ed.), Oral Drug Absorption: Prediction and Assessment, Marcel Dekker, New York, 2000, pp. 11–16.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Amy Foraker for her assistance with the confocal microscopy studies. Kelly Kitchens received financial support for this research by a pre-doctoral National Research Service Award from the National Institute of General Medical Sciences (F31-GM67278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchens, K.M., Kolhatkar, R.B., Swaan, P.W. et al. Transport of Poly(Amidoamine) Dendrimers across Caco-2 Cell Monolayers: Influence of Size, Charge and Fluorescent Labeling. Pharm Res 23, 2818–2826 (2006). https://doi.org/10.1007/s11095-006-9122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9122-2

Key words

Navigation