Skip to main content
Log in

Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns

Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this paper is to provide a physical description of the amorphous state for pharmaceutical materials and to investigate the pharmaceutical implications. Techniques to elucidate structural differences in pharmaceutical solids exhibiting characteristic X-ray amorphous powder patterns are also presented.

Materials and Methods

The X-ray amorphous powder diffraction patterns of microcrystalline cellulose, indomethacin, and piroxicam were measured with laboratory XRPD instrumentation. Analysis of the data were carried out using a combination of direct methods, such as pair distribution functions (PDF), and indirect material modeling techniques including Rietveld, total scattering, and amorphous packing.

Results

The observation of X-ray amorphous powder patterns may indicate the presence of amorphous, glassy or disordered nanocrystalline material in the sample. Rietveld modeling of microcrystalline cellulose (Avicel® PH102) indicates that it is predominantly disordered crystalline cellulose Form Iβ with some amorphous contribution. The average crystallite size of the disordered nanocrystalline cellulose was determined to be 10.9 nm. Total scattering modeling of ground samples of α, γ, and δ crystal forms of indomethacin in combination with analysis of the PDFs provided a quantitative picture of the local structure during various stages of grinding. For all three polymorphs, with increased grinding time, a two-phase system, consisting of amorphous and crystalline material, continually transformed to a completely random close packed (RCP) amorphous structure. The same pattern of transformation was detected for the Form I polymorph of piroxicam. However, grinding of Form II of piroxicam initially produced a disordered phase that maintained the local packing of Form II but over a very short nanometer length scale. The initial disordered phase is consistent with continuous random network (CRN) glass material. This initial disordered phase was maintained to a critical point when a transition to a completely amorphous RCP structure occurred.

Conclusions

Treating X-ray amorphous powder patterns with different solid-state models, ranging from disordered nanocrystalline to glassy and amorphous, resulted in the assignment of structures in each of the systems examined. The pharmaceutical implications with respect to the stability of the solid are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Abbreviations

API:

active pharmaceutical ingredient

CRN:

continuous random network

NN:

nearest neighbor

NNN:

next nearest neighbor

NNNN:

next next nearest neighbor

LRO:

long-range order

MCC:

microcrystalline cellulose

MRO:

medium-range order

PDF:

pair distribution function

RCP:

random close packed

SRO:

short-range order

XRPD:

X-ray powder diffraction

References

  1. B. C. Hancock and G. Zografi. Characteristics and significance of amorphous solids in pharmaceutical systems. J. Pharm. Sci. 86:1–12 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. P. G. Debenedetti. Metastable Liquids : Concepts and Principles, Princeton University Press, Princeton, New Jersey, 1996.

    Google Scholar 

  3. S. J. L. Billinge and M. F. Thorpe. Local Structure from Diffraction, Plenum, New York, 1998.

    Google Scholar 

  4. W. H. Zachariasen. The atomic arrangement in glass. J. Am. Chem. Soc. 54:3841–3851 (1932).

    Article  CAS  Google Scholar 

  5. B. Wunderlich. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta 340–341:37–52 (1999).

    Article  Google Scholar 

  6. C. B. Murray, D. J. Norris, and M. G. Bawendi. Characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715 (1993).

    Article  CAS  Google Scholar 

  7. D. A. Keen and M. T. Dove. Total scattering studies of silica polymorphs: similarities in glass and disordered crystalline local structures. Minerological Magazine 64(3):447–455 (2000).

    Article  CAS  Google Scholar 

  8. S. R. Elliott. Physics of Amorphous Materials, 2 ed. Longman, London, 1990.

    Google Scholar 

  9. M. P. Fontana, R. Burioni, and D. Cassi. Generalized Landau Peierls instability: a novel perspective on the nature of glasses? Philos. Mag. B 84(13–16):1307–1311 (2004).

    CAS  Google Scholar 

  10. D. Kivelson, S. A. Kivelson, X. Zhao, Z. Nussinov, and G. Tarjus. A thermodynamic theory of supercooled liquids. 219:27–38 (1995). H. Tanaka. Two-order-parameter description of liquids. I. A general model of glass transition covering its strong to fragile limit. 111(7):3163–3174 (1999). H. Tanaka. Two-order-parameter description of liquids. II. Criteria for vitrification and predictions of our model. 111(7):3175–3182 (1999).

  11. K. J. Crowley and G. Zografi. Cryogenic grinding of indomethacin polymorphs and solvates : assessment of amorphous phase formation and amorphous phase stability. J. Pharm. Sci. 91:492–507 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. (a) A. R. Sheth, S. Bates, F. X. Muller, and D. J. Grant. Local structure in amorphous phases of piroxicam from powder X-ray diffractometry. Cryst. Growth Des. 5(2):571–578 (2005). (b) A. R. Sheth, S. Bates, F. X. Muller, and D. J. Grant. Polymorphism in Piroxicam. Cryst. Growth Des. 4(6):1091–1098 (2004).

  13. P. Debye. Ann. d. Physik. 46:809–823 (1915).

    CAS  Google Scholar 

  14. T. Proffen. Analysis of occupational and displacive disorder using atomic pair distribution function: a systematic investigation. Z. Kristallogr. 215:1–8 (2000).

    Article  Google Scholar 

  15. T. Proffen, S. J. L. Billinge, T. Egami, and D. Louca. Structural analysis of complex materials using the atomic pair distribution function—a practical guide. Z. Kristallogr. 218:132–143 (2003).

    Article  CAS  Google Scholar 

  16. M. Bishop and C. Bruin. The pair correlation function: a probe of molecular order. Am. J. Phys. 52:1106–1108 (1984).

    Article  CAS  Google Scholar 

  17. A. Guinier. X-ray Diffraction In Crystals, Imperfect Crystals, and Amorphous Bodies, Dover, New York, 1994.

    Google Scholar 

  18. H. P. Klug and L. E. Alexander. X-ray Diffraction Procedures for Polycrystalline and Amorphous Material, Wiley, New York, 1974.

    Google Scholar 

  19. B. E. Warren. X-ray Diffraction, Dover, New York, 1990.

    Google Scholar 

  20. B. H. Toby and T. Egami. Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials. Acta Crystallogr. A48:336–346 (1992).

    CAS  Google Scholar 

  21. P. F. Peterson, E. S. Bozin, T. Proffen, and S. J. L. Billinge. Improved measures of quality for the atomic pair distribution function. J. Appl. Crystallogr. 36:53–64 (2003).

    Article  CAS  Google Scholar 

  22. V. Petkov, S. J. L. Billinge, S. D. Shastri, and B. Himmel. High-resolution atomic distribution functions of disordered materials by high-energy X-ray diffraction. J. Non-Cryst. Solids 293–295:726–730 (2001).

    Article  Google Scholar 

  23. H. M. Rietveld. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22:151–152 (1967).

    Article  CAS  Google Scholar 

  24. H. M. Rietveld. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2:65–71 (1969).

    Article  CAS  Google Scholar 

  25. M. Ferrari and L. Lutterotti. Method for the simultaneous determination of anisotropic residual stresses and texture by X-ray diffraction. J. Appl. Phys. 76(11):7246–7255 (1994).

    Article  CAS  Google Scholar 

  26. S. Matthies, L. Lutterotti, and H.-R. Wenk. Advances in texture analysis from diffraction spectra. J. Appl. Crystallogr. 30:31–42 (1997).

    Article  CAS  Google Scholar 

  27. L. Lutterotti, S. Matthies, and H.-R. Wenk. MAUD (Material Analysis Using Diffraction): a user friendly {Java} program for {Rietveld} Texture Analysis and more. Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12) 1:1599–1604 (1999).

  28. R. C. Reynolds, Jr. Diffraction by small and disordered crystals. Chapter 6, In D. L. Bish and J. E. Post (eds.), Modern Powder Diffraction, Mineralogical Society of America, Washington, District of Columbia, 1989.

    Google Scholar 

  29. J. M. Cowley. Diffraction Physics, North-Holland, Amsterdam, 1995.

    Google Scholar 

  30. S. Bates and I. Ivanisevic, manuscript in preparation.

  31. S. R. Williams and A. P. Philipse. Random packing of spheres and spherocylinders simulated by mechanical contraction. Phys. Rev. E 67:051301 (2003).

    Article  CAS  Google Scholar 

  32. W. Man et al. Experiments on Random Packing of ellipsoids. Phys. Rev. Lett. 94:198001 (2005).

    Article  PubMed  Google Scholar 

  33. A. Donev, J. Burton, F. H. Stillinger, and S. Torquato. Tetratic order in phase behavior of hard-rectangle system. Phys. Rev. B 73:054109 (2006).

    Article  Google Scholar 

  34. R. W. James. The optical principles of the diffraction of X-rays. Chapter IX, In The Scattering of X-rays by Gases, Liquids and Amorphous Solids, Ox Bow, Woodbridge, 1962.

    Google Scholar 

  35. J. Perlstein. Molecular self-assemblies. 2. A computational method for the prediction of the structure of one dimensional screw, glide, and inversion molecular aggregates and implications for the packing of molecules in monolayers and crystals. J. Am. Chem. Soc. 116:455–470 (1994).

    Article  CAS  Google Scholar 

  36. Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan. Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074–9082 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron and neutron fiber diffraction. J. Am. Chem. Soc. 125:14300–14306 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. H. Batzer and Kreibich, Influence of water on thermal transitions in natural polymers and synthetic polyamides. Polym. Bull. 5:585 (1981).

    Article  CAS  Google Scholar 

  39. L. Salmen and E. Back. Moisture-dependent thermal softening of paper evaluated by its elastic modulus. Tappi 63:117–120 (1980).

    CAS  Google Scholar 

  40. J. A. Kaduk and P. Langan. Crystal structures and hydrogen bonding in celluloses Iα, Iβ, and II. Advances in X-Ray Analysis, Vol. 47. [Proceedings of the 52nd Annual Denver Conference on Applications of X-Ray Analysis, Held August 4–8, 2003, University of Denver, Colo.]. (2003).

  41. P. Langan, S. Narayanasami, Y. Nishiyama, and H. Chanzy. Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12(6):551–562 (2005).

    Article  CAS  Google Scholar 

  42. G. Zografi, M. J. Kontny, A. Y. S. Yang, and G. S. Brenner. Surface area and water vapor sorption of microcrystalline cellulose. Int. J. Pharm. 18:99–116 (1984).

    Article  CAS  Google Scholar 

  43. P. J. Cox and P. L. Manson. γ-Indomethacin at 120 K. Acta Crystallogr. E59:o986–o988 (2003).

    CAS  Google Scholar 

  44. L. S. Taylor and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1698 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. K. S. Masuda, S. Tabata, Y, Sakata, T. Hayase, E. Yomemochi, and K. Terada. Comparison of molecular mobility in the glassy state between amorphous indomethacin and slaicin based on spin-lattice relaxation times. Pharm. Res. 22:797–805 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. A. R. Sheth, J. W. Lubach, E. J. Munson, F. X. Muller, and D. J. W. Grant. Machanochroism of piroxicam accompanied by intermolecular proton transfer probed by spectroscopic methods and solid-phase changes. J. Amer. Chem. Soc. 127:6641–6651.

  47. A. Salecki-Gerhardt and G. Zografi. Assessment of disorder in crystalline solids. Int. J. Pharm. 101:237–247 (1994).

    Article  Google Scholar 

  48. A. P. Simonelli, S. C. Mehta, and W. I. Higuchi. Dissolution rates of high energy sulfathiazole–povidone coprecipitates II : characteristics of form of drug controlling Its dissolution rate via solubility studies. J. Pharm. Sci. 65:355–361 (1976).

    PubMed  CAS  Google Scholar 

  49. K. Crowley and G. Zografi. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) dispersions on indomethacin crystallization from the amorphous state. Pharm. Res. 20:1417–1422 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. V. Andronis and G. Zografi. Crystal nucleation and growth of indomethacin from the amorphous state. J. Non-Cryst. Solids 271:236–248 (2000).

    Article  CAS  Google Scholar 

  51. M. Yoshioka, B. C. Hancock, and G. Zografi. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 83:1700–1704 (1994).

    PubMed  CAS  Google Scholar 

  52. M. Otsuka and N. Kaneniwa. A kinetic study of the crystallization process of noncrystalline indomethacin under isothermal conditions. Chem. Pharm. Bull. 36:4026–4032 (1988).

    PubMed  CAS  Google Scholar 

  53. A. Ha, I. Cohen, X. Zhao, M. Lee, and D. Kivelson. Supercooled liquids and polyamorphism. J.Phys. Chem. 100:1–4 (1996).

    Article  CAS  Google Scholar 

  54. P. F. McMillan. Polymorphic transformations in liquids and glasses. J. Mater. Chem. 14:1506–1512 (2004).

    Article  CAS  Google Scholar 

  55. E. Y. Shalaev and G. Zografi. The concept of structure in amorphous states from the perspective of the pharmaceutical sciences. In H. Levine (ed.), Progress in Amorphous Food and Pharmaceutical Systems, The Royal Chemistry Society, London, 2002, pp.11–30.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Paul Shields for collecting the XRPD data on microcrystalline cellulose and Igor Ivaniesevic for computational assistance. We would also like to thank Agam Sheth and the late David Grant for the use of the ground piroxicam data. This paper is dedicated to the memory of Professor David J. W. Grant who significantly contributed to our knowledge of solid-state pharmaceutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Newman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, S., Zografi, G., Engers, D. et al. Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns. Pharm Res 23, 2333–2349 (2006). https://doi.org/10.1007/s11095-006-9086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9086-2

Key Words

Navigation